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In type systems with dependency tracking, programmers can assign an ordered set of levels to computations

and prevent information flow from high-level computations to the low-level ones. The key notion in such

systems is indistinguishability: a definition of program equivalence that takes into account the parts of the

program that an observer may depend on. In this paper, we investigate the use of dependency tracking in the

context of dependently-typed languages. We present the Dependent Calculus of Indistinguishability (DCOI),

a system that adopts indistinguishability as the definition of equality used by the type checker. DCOI also

internalizes that relation as an observer-indexed propositional equality type, so that programmers may reason

about indistinguishability within the language. Our design generalizes and extends prior systems that combine

dependency tracking with dependent types and is the first to support conversion and propositional equality at

arbitrary observer levels. We have proven type soundness and noninterference theorems for DCOI and have

developed a prototype implementation of its type checker.

CCS Concepts: • Theory of computation→ Type theory.

Additional Key Words and Phrases: Modes, Dependent Types, Coq, Formalization

ACM Reference Format:
Yiyun Liu, Jonathan Chan, Jessica Shi, and Stephanie Weirich. 2024. Internalizing Indistinguishability with

Dependent Types. Proc. ACM Program. Lang. 8, POPL, Article 44 (January 2024), 28 pages. https://doi.org/10.

1145/3632886

1 INTRODUCTION
Dependency tracking is a static analysis that determines how computations depend on their inputs.

Type systems that support dependency tracking assign levels drawn from some partial order to

computations, and prevent the flow of information from higher level computations to lower ones.

For example, consider the type signature of a function f as follows, where the levels L (for low)

and H (for high) are ordered L < H.

f : L NatH →Nat

The type signature reads that f is a function that takes a natural number typed at level H and returns
a natural that is typed at level L. Because L < H, the function f may not use its argument and must

behave like a constant function.

Dependency tracking is a general feature of type systems and has a variety of applications [Abadi

et al. 1999], most frequently information flow analysis [Denning and Denning 1977; Sabelfeld and

Myers 2003], but also partial evaluation [Hatcliff and Danvy 1997] and staged programming [Sheard
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and Nelson 1995; Taha and Sheard 2000]. In the context of dependent type systems, it is related to

relevance tracking [Choudhury et al. 2022; de Bruijn 1994; Miquel 2001; Mishra-Linger and Sheard

2008], two-level type theory [Annenkov et al. 2023], and the phase distinction in the ML module

system [Sterling and Harper 2021].

Levels used for dependency tracking take on different meanings depending on the specific

application. For example, in relevance tracking, the dependency levels L and H can represent

relevant and irrelevant computations, respectively, where irrelevant computations can be erased

prior to run time. For information flow, the dependency levels correspond to clearance levels

and only computations typed at level H can access classified information. For each application,

dependency levels are drawn from a predetermined partially ordered set or a richer structure such

as a lattice.

When reasoning about program equivalence in a system that supports dependency tracking, the

key idea is indistinguishability: an equivalence relation that is indexed by an observer level [Sabelfeld
and Myers 2003]. This relation defines program equivalence from the point of view of an observer—

all parts of the program that are unobservable at that level can be safely equated because the system

prevents the observer from depending on those values.

Dependently-typed languages support intrinsic reasoning about program equivalence. Calculi

such as PTS [Barendregt 1993], CIC [Coquand and Paulin 1990], and MLTT [Martin-Löf 1975]

characterize what it means for programs to be equal and use this definition of equality for type

conversion. In these systems, two terms are typically definitionally equal when they are 𝛽-equivalent

or 𝛽𝜂-equivalent. Furthermore, the propositional equality type internalizes the equality judgment

as a mechanism for intrinsic reasoning about program equivalence. In CIC and MLTT, the type

a ∼ b ∈ A asserts that the terms a and b (of type A) are equal. If this proposition is provable, we say

that a and b are propositionally equal. In dependent type systems, more terms are propositionally

equal than definitionally equal: for example, one can use induction on naturals to prove x + 0 ∼
x ∈ Nat even when x + 0 and x are not definitionally equal. By internalizing definitional equality

as the equality type, programmers gain a powerful tool for reasoning about program equivalence.

However, the power of this tool depends on the definition of equivalence in the first place.

In the context of dependency tracking, it is sound to equate programs that are not necessarily

𝛽𝜂-equivalent as long as their differences are not observable. To explore this idea, we present

the Dependent Calculus of Indistinguishability (DCOI)
1
, a dependently-typed calculus that uses

indistinguishability as its definition of equality.

DCOI can type check programs that would be rejected by CIC or MLTT. For example, given a

function P with the signature P : L BoolH → Type, we should be able to safely convert between

the types P True and P False . During conversion, the type checker can skip the comparison of

True and False because the signature of P tells us that P cannot use its argument in a way that is

observable at level L.

In exploring the design of DCOI, this paper makes the following contributions.

• When using indistinguishability as definitional equality, there is the question of what ob-

server level should be used. While it is tempting to use a fixed observer level for type

checking [Choudhury et al. 2022], we show here that it is sound to use any observer level that

is compatible with the terms being compared. Furthermore, this relation can be composed

step-wise: if a is equal to b at level ℓ1 and b is equal to c at level ℓ2, then we can also equate

a and c, even though those terms may not be equal at ℓ1 ∧ ℓ2. We define how dependency

tracking works in DCOI in Section 3 and its role in definitional equality in Section 3.3.

1
pronounced “decoy”
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• We internalize the indistinguishability judgment in DCOI as an indexed equality type (Sec-

tion 3.4). Programmers can use this type to reason about program equivalences at a specified

observer level. For security type systems, the observer-indexed equality type can be used to

show that two programs appear identical to observers with lower clearance levels, ensuring

that no secret information is leaked after, say, a significant refactoring. In a system with

relevance tracking, programmers can reason about programs without concerning themselves

with the irrelevant type-level computations that are meant to be erased after compilation.

This design crucially depends on the flexible definition of equality above: the elimination

rule for this type must be able to reason about convertibility at any observer level.

• To ensure that our design makes sense, we have mechanically checked its metatheoretic

properties, including type soundness and noninterference. Our type soundness result requires

showing the consistency of definitional equality, or a proof that equal types have the same

head form. We provide an overview of these proofs in Section 4.

• We identify constraints on dependency tracking that are imposed by our use of indistinguisha-

bility for type conversion and discuss these constraints in Section 5. Our design contrasts

with prior work [Abadi et al. 1999; Choudhury et al. 2022; Shikuma and Igarashi 2008] that

we have found to be incompatible with our approach. The insights gained in exploring this

design space also explain why several existing mechanisms for tracking run-time irrelevance

in dependently typed languages cannot be extended to compile-time irrelevance.

• To understand how DCOI works in practice, we have developed a prototype implementation

that extends our core language with level-indexed data types. We have used this implementa-

tion to experiment with the development of sample programs. In the next section, we use

these examples to provide an introduction to DCOI. We discuss our implementation in more

detail in Section 6.

Our Coq proof scripts and prototype implementation are available as supplementary materials.

2 MOTIVATING EXAMPLES
In this section, we present three applications of dependency analysis as motivating examples:

run-time irrelevance,
2
compile-time irrelevance,

3
and secure information flow.

4

All examples in this section have been type checked by our implementation, with footnotes

pointing to the corresponding source file. For clarity, we omit some type and level annotations and

use the concrete syntax of DCOI as presented in the next section.

To make these examples more realistic, we use data definitions that are not in the DCOI core

calculus but are supported by our prototype implementation (Section 6). We also use constructs

desugared from DCOI’s dependent pairs: nondependent pairs; dependent pairs where one compo-

nent is labeled with a different level; and box types𝑇 ℓ A, similar to the graded modal type of Abadi

et al. [1999], that encapsulate terms at a higher level.

2.1 Run-Time Irrelevance
Parts of programs that are not computationally meaningful when run can be considered run-time
irrelevant. An optimizing compiler can erase the run-time irrelevant parts to yield a more space-

and time-efficient program, because those arguments do not need to be kept around or reduced

needlessly [Brady 2005; Paulin-Mohring 1989]. Run-time irrelevance annotations tell the compiler

what can be erased, and in a well typed program, irrelevant terms are never used relevantly.

2 pi/RunTime.pi 3 pi/CompileTime.pi 4 pi/InfoFlow.pi
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For instance, consider the (simplified) polymorphic constant function, whose type argument and

unused input argument we mark irrelevant with label H. Unlabeled arguments and definitions are

treated as relevant by default, sometimes labeled with L for clarity, where L < H.

const : L (A :H Type)→ A → AH →A
const = 𝜆A :H Type. 𝜆x : A. 𝜆y : H A. x

The L annotation next to const says that const is a relevant computation. Since const is a function,
the relevance of const is determined by the relevance of its output. That is, the output of a relevant

function can only use an irrelevant argument in irrelevant positions, as part of a type annotation (as

is the case for the type argument A) or as an argument to another function that takes an irrelevant

argument. If we try to return the irrelevant argument y instead as the output for const, the program
will no longer type check. Since well-typedness enforces that the first and third arguments of const
cannot be used relevantly in its body, both arguments can be safely erased at run-time.

Run-time irrelevance is also useful for extracting only the relevant parts out of proof-carrying

code. Consider the following inductive type representing the proposition that a natural is even. Its

constructors are labeled as irrelevant because we intend to erase such proofs.

data Even : Nat → Type where
ZEven : H Even 0
SSEven :H (n : Nat) → (Even n)H →Even (Succ (Succ n))

To represent the type of even naturals, we use the subset type {x : L Nat | Even x} . Its elements

are relevant dependent pairs whose first component is a relevant natural, and whose second

component is an irrelevant proof of evenness. Using a lemma stating that the sum of two even

naturals is even (definition elided),

evenEven :H (n : Nat) → (m : Nat) → (Even n)H → (Even m)H → Even (add n m)

we can define addition on even naturals. If all its run-time irrelevant parts—the proofs of

evenness—are erased, this function corresponds exactly to the usual addition on naturals.

addEven : {x : Nat | Even x} → {x : Nat | Even x} → {x : Nat | Even x}
addEven (n, en) (m, em) = (add n m, evenEven n m en em)

Consider next the following inductive type for length-indexed vectors, whose length index is

labeled as irrelevant. These vectors can be erased to ordinary inductive lists.

data Vector (A : H Type) :H NatH →Type where
Nil : Vector A 0
Cons : (n : H Nat) → A → Vector A n → Vector A (Succ n)

If we were to implement a map function over vectors, the index of the vector ensures that it

returns a vector with the same length, and by marking the index as irrelevant, the function can be

erased at run time to one that looks just like a map function on lists.

map : (A : H Type) → (B : H Type)→ (n : H Nat) →
(A → B) → Vector A n → Vector B n

map A B n f v = case v of
Nil ⇒ Nil
Cons n′ y ys ⇒ Cons n′ (f y) (map A B n′ f ys)
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It is worth pointing out that the irrelevant arguments A,B, and n do appear syntactically in the

body of map. However, this is allowed since they all appear as irrelevant arguments to a function,

which, in this case, is map itself.

2.2 Compile-Time Irrelevance
Relevance tracking is not only useful for run-time erasure, but also for ignoring terms during type

conversion, known as compile-time irrelevance [de Bruijn 1994]. It allows us to type check the

following program where the second argument is a type constructor that ignores its input.

substNat : (n : H Nat) → (P : L NatH →Type) → P n → P 0
substNat n P e = e

In substNat, the type checker converts the type of the argument e from P n to the return type

P 0. This is valid because P is typed at level L with an input typed at level H, so these terms are

indistinguishable to an L observer.

However, it is not always possible to type a type constructor at level L. Recall Vector, which
takes in a type parameter and length index that we regard as run-time irrelevant, labeled H. If we
tried to type the overall function Vector at level L, then Vector Bool 1 and Vector Nat 2 would be

indistinguishable, which would violate type safety since we can now extract an element out of a

boolean vector and treat it as a natural number. To ensure we do not convert between these two

types, Vector must be typed at level at least H.
With only two levels L and H, we cannot describe what is irrelevant to a type already typed at

level H. Being able to talk about irrelevance at level H is useful in practice: we may want to treat

proofs of some propositions as compile-time irrelevant or erase irrelevant components to speed

up type-level reduction. We can add a label S (for super-high) where L < H < S. This allows us
to define the following program where the evenness proof, typed at level S, is ignored by a type

constructor P typed at level H.

substEven : (P : H NatH → (Even n)S → Type) → (n : H Nat) →
(en1 :S Even n) → (en2 :S Even n) → P n en1 → P n en2

substEven n P en1 en2 p = p

Intuitively, with the ordering of relevance labels L < H < S, terms at higher relevance labels are

indistinguishable from the perspective of observers at lower relevance labels. Since the function

substEven is typed at level L, all of its argument except for p are erasable at run time. The type

constructor P, on the other hand, is typed at level H. In P n en1 and P n en2, the natural n is typed

at level H and used relevantly at compile time, whereas the evenness proofs en1 and en2 are both
typed at level S and used irrelevantly at compile time. As a result, we can convert between evenness

proofs, but the natural must remain the same.

DCOI also includes a propositional equality type 𝑎 ∼ℓ 𝑏 that internalizes indistinguishability

observed at level ℓ . The refl term introduces elements of this type. For example, P en1 ∼H P en2 is
inhabited by refl, since the two arguments are indistinguishable to H observers.

This level-indexed equality type enables reasoning about equalities at that level. For example,

suppose we have a lemma showing commutativity of natural numbers (definition elided).

addComm : (n : Nat) → (m : Nat) → add n m ∼L add m n

We can use this lemma with transp, the elimination term for propositional equality, to prove the

commutativity of adding two even naturals.

addEvenComm : (en : {n : Nat | Even n}) → (em : {m : Nat | Even m}) →
addEven en em ∼L addEven em en
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addEvenComm (n, en) (m, em) = transp (addComm n m) refl

Given (n, en) and (m, em), our goal is to show that (add n m, evenEven n m en em) and
(add m n, evenEven m n em en) are propositionally equal. In addition to showing that (add n m)
and (add m n) are equal, we would normally need to manually prove that (evenEven n m en em)
and (evenEven m n em en) are equal, further complicated by their definitionally unequal types

Even (add n m) and Even (add m n). However, since these proofs are compile-time irrelevant, and

we wish to prove a relevantly-indexed equality, the type checker ignores the irrelevant second

components, and it suffices to prove the relevant first components equal.

2.3 Information Flow
Dependency analysis can be used to model secure information flow [Denning and Denning 1977],

where information can never flow from a higher security level H to a lower security level L. To an

observer at L, values of a given type at H are indistinguishable from one another, and higher-level

information therefore cannot be used meaningfully except to be passed around. On the other hand,

observers with higher-level clearance are able to use lower-level information. In the following

examples, unlabeled arguments and definitions are treated as low-security by default.

Consider the construct boxH a that hides a secret value a of type A in a high-security box of type

𝑇 H A. One way a low-clearance function can inspect and branch on a secret natural, for instance, is

to always box up its output.

secretPred : L (n : H Nat) → 𝑇 H Nat
secretPred n = boxH (case n of
Zero ⇒ Zero
Succ m⇒m)

Unboxing a boxed secret value yields a secret value, which a low-clearance function can’t do

much with except to pass it to a function that takes a high security value, such as in the ap function

below. All of ap’s arguments are low-security and it returns a low-security value, but it can still

run a secret function on a secret value without ever knowing what was done and to which value.

ap : L (A : Type) → (B : Type) → 𝑇 H (AH →B) → 𝑇 H A→ 𝑇 H B
ap A B f a = boxH (unboxH f (unboxH a))

We can show metatheoretically that low-clearance functions cannot distinguish between high-

level arguments, using the noninterference property of DCOI (Section 4.4). Furthermore, with

internalized indistinguishability, programmers can also reason about noninterference within the

language.

3 DEPENDENT CALCULUS OF INDISTINGUISHABILITY
In this section, we present the syntax, judgments, and derivation rules of DCOI. The syntax of DCOI

(Figure 1) is parameterized over a lattice L of dependency levels (following Abadi et al. [1999]) and

a set of sorts S (following Barendregt [1993]). We use the metavariable ℓ for dependency levels and

s for sorts. For lattices, we use ℓ1 ∧ ℓ2 and ℓ1 ∨ ℓ2 for the meet and join operations. For the examples

in this section, we instantiate the lattice to {L, H}, where L < H, and the set of sorts to include the

constant ★, which represents the type of types.

The typing judgment of DCOI takes the form Γ ⊢ a :
ℓ A. Ignoring the labels ℓ in the judgment

form and its rules, the typing rules in Figure 2 are a variant of Barendregt’s Pure Type Systems

(PTS) [Barendregt 1993]. These rules are parameterized over a set of sorts S, a set of axioms

A ⊆ S2
, and sets of rules RΠ ⊆ S3

, R𝑈 ⊆ S, R𝐵 ⊆ S. The axioms dictate how sorts are typed

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 44. Publication date: January 2024.
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Contexts
Γ ::= · | Γ, x :ℓ A variables annotated by level and type

Φ ::= · | Φ, x : ℓ variables annotated by level

Terms
a, b,A, B ::= s | x | Unit | unit sort, variables, unit type, unit

| Πx :ℓ A. B | 𝜆x :ℓ A. a | a bℓ function types, abstractions, applications

| Σx:ℓA. B | (aℓ , b) | 𝜋 ℓ
1
a | 𝜋 ℓ

2
a dependent pair types, pairs, projections

| a ∼ℓ b ∈ℓ0 A | refl | transp a b equality types, reflexivity proof, transport

| B | true | false | if a b0 b1 boolean type, true, false, if

Fig. 1. Syntax of DCOI

Γ ⊢ a :
ℓ A (Typing)

T-Type

⊢ Γ (s1, s2) ∈ A
Γ ⊢ s1 :ℓ s2

T-Conv

Γ ⊢ a :
ℓ A Γ ⊢ B :

ℓ0 s
|Γ | ⊢ A ≡ B

Γ ⊢ a :
ℓ B

T-Var

⊢ Γ
ℓ0 ≤ ℓ x :ℓ0 A ∈ Γ

Γ ⊢ x :
ℓ A

T-Pi

Γ ⊢ A :
ℓ s1

Γ, x :ℓ0 A ⊢ B :
ℓ s2

(s1, s2, s3) ∈ RΠ

Γ ⊢ Πx :ℓ0 A. B :
ℓ s3

T-Abs

Γ, x :ℓ0 A ⊢ b :
ℓ B

Γ ⊢ (Πx :ℓ0 A. B) :ℓ1 s
Γ ⊢ 𝜆x :ℓ0 A. b :

ℓ Πx :ℓ0 A. B

T-App

Γ ⊢ b :
ℓ Πx :ℓ0 A. B

Γ ⊢ a :
ℓ0 A

Γ ⊢ b aℓ0 :ℓ B{a/x}

T-TyUnit

⊢ Γ s ∈ R𝑈

Γ ⊢ Unit :ℓ s

T-TmUnit

Γ ⊢ Unit :ℓ0 s
Γ ⊢ unit :ℓ Unit

T-Bool

⊢ Γ s ∈ R𝐵

Γ ⊢ B :
ℓ s

T-True

Γ ⊢ B :
ℓ0 s

Γ ⊢ true :ℓ B

T-False

Γ ⊢ B :
ℓ0 s

Γ ⊢ false :ℓ B

T-If

Γ ⊢ a :
ℓ B Γ ⊢ b0 :ℓ A
Γ ⊢ b1 :ℓ A

Γ ⊢ if a b0 b1 :ℓ A

⊢ Γ (Context well-formedness)

Ctx-Empty

⊢ ·

Ctx-Cons

⊢ Γ Γ ⊢ A :
ℓ s

x ∉ dom Γ

⊢ Γ, x :ℓ0 A

Fig. 2. Typing rules (selected)

in rule T-Type, and the rules dictate the sorts assigned to types. For example, function types are

typed with respect to the sorts of their domain and codomain types in rule T-Pi. The sorts, axioms,

and rules can determine the expressiveness of the language and its normalization properties. For

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 44. Publication date: January 2024.
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example, by instantiating S to ★, A to {(★,★)}, and RΠ to {(★,★,★)}, we obtain a system with

unrestricted access to type-level computation, but which fails the normalization property due to

Girard’s paradox [Girard 1972].
5

DCOI supports dependency tracking, as described in Section 3.1. This leads to the most significant

divergence from Barendregt’s system, the definitional equality relation used in rule T-Conv. This

rule permits converting the type of a term to a definitionally equal type, but whereas Barendregt

uses 𝛽-equivalence, DCOI makes use of the indistinguishability relation introduced in Section 3.3.

We also extend the core system with dependent pairs (Section 3.2) and propositional equality

(Section 3.4). The boolean type B is used as a base type to formulate the noninterference property

(Section 4.4). For concision, we use Aℓ → B as a shorthand for Πx :ℓ A. B when x does not appear in

B.

3.1 Dependency Tracking
The level ℓ from the typing judgment Γ ⊢ a :

ℓ A indicates the observer level used to type check the

term a. As enforced in the precondition of rule T-Var, to access a variable, the observer level of the

computation must be at least as high as the level at which the variable is labeled.

Functions that type check at a lower observer level may still accept a higher-level argument, as

long as the argument is only used in higher-level positions. Rule T-Abs constructs a function that

expects a computation with observer level ℓ0 as its argument. Correspondingly, rule T-App checks

the function argument at level ℓ0, a level that is completely independent of the observer level ℓ .

Both the abstraction and application forms are annotated with this argument level.

As an example of how rules T-Var, T-Abs, and T-App support relevance tracking, consider the

following term with a hole (□).

𝜆x0 :HB. 𝜆x1 :L (BH → B).□
If we want to type check the term at level L, we cannot fill □ with x0 since the observer level

required to access x0 is H. However, if we substitute x1 x0H for □, the term type checks at L despite

x0 appearing in the function body; when checking x0 as an argument to the function x1, rule T-App
changes the observer level from L to H so x0 can be legally used. Rule T-Abs ensures that all functions
that type check at level L with type BH → B behave like constant functions. The function 𝜆x :HB. x,
for example, is ill-typed at level L since x is at level Hwhereas the observer level is L. In other words,

the declaration x1 :L BH → B encodes the contract that x1 does not use its input to construct its

result in a way that can be observed at level L. This gives an intuitive justification for why the term

𝜆x0 :HB. 𝜆x1 :L (BH → B). x1 x0H, which type checks at L, does not leak the high-level information

from x0.
The observer level ℓ at the colon does not have to be precise. The following subsumption lemma

says if a term type checks at level ℓ , then it also type checks at levels higher than ℓ . It can be viewed

as a propagation of variable level subsumption ℓ0 ≤ ℓ from rule T-Var to the rest of the system. In

terms of relevance tracking, this lemma embodies the idea that relevant computations can be lifted

to become irrelevant.

Lemma 3.1 (Subsumption
6
). If Γ ⊢ a :

ℓ0 A and ℓ0 ≤ ℓ , then Γ ⊢ a :
ℓ A.

In rule T-Abs, we check that the function type can be assigned a sort s. The most interesting

part of this premise is the choice of the function type level ℓ1, which is independent of the observer

level ℓ and the argument level ℓ0. To show that a type is well formed, it suffices to show that the

type is well formed at some arbitrarily chosen level. The flexible choice of the observer level for

the well-formedness check affects how we formulate the regularity property.

5
In Section 5.4, we discuss our conjectures about the normalization behavior of various instantiations of DCOI.

6 upgrade.v:typing_subsumption

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 44. Publication date: January 2024.

proofs/upgrade.v


Internalizing Indistinguishability with Dependent Types 44:9

Lemma 3.2 (Regularity
7
). If Γ ⊢ a :

ℓ A, then there exists a level ℓ0 and a sort s such that Γ ⊢ A :
ℓ0 s.

If we instantiate ℓ to a bounded lattice, Lemma 3.2 is equivalent to the statement that the types

of terms are always well typed at the topmost level. Intuitively, we are allowed to check well-

formedness at our level of choice because given Γ ⊢ a :
ℓ A, DCOI does not have an operator to

allow the retrieval of type A from the term a at run time. As a result, we can safely allow A to rely

on secrets that are not accessible to a without worrying about any leakage.

3.2 Dependent Pairs

Γ ⊢ a :
ℓ A (Typing: dependent pairs)

T-SSigma

Γ ⊢ A :
ℓ s1

Γ, x :ℓ0 A ⊢ B :
ℓ s2 (s1, s2, s3) ∈ RΣ

Γ ⊢ Σx:ℓ0A. B :
ℓ s3

T-SPair

Γ ⊢ Σx:ℓ0A. B :
ℓ1 s

Γ ⊢ a :
ℓ0 A Γ ⊢ b :

ℓ B{a/x}
Γ ⊢ (aℓ0 , b) :ℓ Σx:ℓ0A. B

T-Proj1

Γ ⊢ a :
ℓ Σx:ℓ0A. B ℓ0 ≤ ℓ

Γ ⊢ 𝜋 ℓ0
1
a :

ℓ A

T-Proj2

Γ ⊢ a :
ℓ Σx:ℓ0A. B Γ ⊢ 𝜋 ℓ0

1
a :

ℓ0 A

Γ ⊢ 𝜋 ℓ0
2
a :

ℓ B{𝜋 ℓ0
1
a/x}

Fig. 3. Typing rules for dependent pairs

The typing rules for dependent pairs can be found in Figure 3. Dependent pair types take the

form Σx:ℓ0A. B. To govern the formation of these types, we extend our rule sets to include RΣ, the

set of rules dictating which pair types are valid, analogous to RΠ . The label ℓ0 in a type Σx:ℓ0A. B
specifies the level of the first component: in rule T-SPair, the first component a is checked at the

labeled level ℓ0 rather than the observer level ℓ . This is analogous to rule T-App where the argument

of the function is also checked independently at the labeled level.

Dependent pairs are eliminated by two projection operators 𝜋
ℓ0
1
a and 𝜋 ℓ0

2
a. Rule T-Proj1 projects

out the first component when the observer level ℓ is greater than or equal to the labeled level

ℓ0, while rule T-Proj2 projects out the second component. The precondition Γ ⊢ 𝜋
ℓ0
1

a :
ℓ0 A in

rule T-Proj2 ensures the well-formedness of the type B{𝜋 ℓ0
1
a/x}. This condition is admissible when

ℓ ≤ ℓ0. Given Γ ⊢ a :
ℓ Σx:ℓ0A. B, we can derive Γ ⊢ a :

ℓ0 Σx:ℓ0A. B by subsumption (Lemma 3.1). We

can then apply rule T-Proj1 to obtain Γ ⊢ 𝜋 ℓ0
1
a :

ℓ0 A. However, the condition is not admissible in

the general case. When ℓ ≰ ℓ0, the pair a may depend on variables that are accessible at level ℓ but

not at ℓ0, so the term 𝜋
ℓ0
1
a is not necessarily typable at level ℓ0 given Γ ⊢ a :

ℓ Σx:ℓ0A. B and ℓ ≰ ℓ0.

The box type 𝑇 ℓ0
from Section 2 can be defined in terms of a dependent pair type whose first

component is the type being boxed, and whose second component is unit.

𝑇 ℓ0 A := Σx:ℓ0A.Unit boxℓ0 a := (aℓ0 , unit) unboxℓ0 a := 𝜋
ℓ0
1
a

Rule T-Proj1 enforces that we can only unbox a term if the observer level ℓ is greater than or

equal to the box level ℓ0. We can derive the following admissible rules for boxes from the rules for

dependent pairs, where the relation R𝑇 is defined in terms of RΣ.

T-T

Γ ⊢ A :
ℓ s1 (s1, s2) ∈ R𝑇

Γ ⊢ 𝑇 ℓ0 A :
ℓ s2

T-Box

Γ ⊢ a :
ℓ0 A Γ ⊢ 𝑇 ℓ0 A :

ℓ1 s

Γ ⊢ boxℓ0 a :
ℓ 𝑇 ℓ0 A

T-Unbox

Γ ⊢ a :
ℓ 𝑇 ℓ0 A ℓ0 ≤ ℓ

Γ ⊢ unboxℓ0 a :
ℓ A

7 regularity.v:typing_regularity
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(s1, s2) ∈ R𝑇 ⇐⇒ ∃s3, (s1, s3, s2) ∈ RΣ ∧ 𝑠3 ∈ R𝑈

Rules T-Box and T-Unbox behave similarly to rules T-SPair and T-Proj1 . Rule T-Box allows us

to place the term a inside a box with level ℓ0 protection provided that a can type check at level ℓ0.

Rule T-Unbox allows us to release the data stored in the box, but requires that the observer level is

greater than or equal to the level associated with the box type.

The box type is a graded modal type. It was first used for dependency tracking in DCC [Abadi

et al. 1999] as an indexed monad type. Our formulation of the box type is most similar to a later

variation of DCC called the Sealing Calculus [Shikuma and Igarashi 2008], which releases the boxed

content through an unbox operator rather than the monadic bind operator from DCC.

3.3 Dependency-Aware Definitional Equality
Rule T-Conv allows us to convert between types that are definitionally equal. The definitional

equality judgment in Figure 4 takes the form Φ ⊢ a ≡ b where Φ is an erased context that maps

variables to their levels. In rule T-Conv, the erased context |Γ | is obtained from the typing context

Γ by dropping the type annotations.

Unlike PTS, definitional equality in DCOI is defined in terms of the indistinguishability judgment,

which takes the form Φ ⊢ a ≡ℓ b. Indistinguishability is a coarser relation than 𝛽-equivalence as it

takes advantage of the dependency information to identify terms that are not convertible through

𝛽-equivalence alone. For example, one can derive the judgment · ⊢ boxH false ≡L boxH true. Even
though the boxes store different boolean values, from an L observer’s point of view, the two terms

cannot be distinguished. Using rule E-One, we can inject indistinguishability into definitional

equality and show that boxH false and boxH true are definitionally equal.

Rule E-Trans means that two terms are definitionally equal if they can be related by a sequence

of indistinguishability judgments, each of which may have a distinct observer level. Note that there

may not be a single observer level that relates all terms in the sequence. In other words, for a fixed Φ,
definitional equality can be defined as the transitive closure of the relation 𝑅(a, b) = ∃ℓ,Φ ⊢ a ≡ℓ b.

Indistinguishability Φ ⊢ a ≡ℓ b and guarded indistinguishability Φ ⊢ a ≡ℓ
ℓ0
b are mutually defined.

In rule GE-App, we use guarded indistinguishability to skip the comparison of unobservable terms.

In particular, when using guarded indistinguishability to compare terms a and b that are labeled
at level ℓ0 but being observed at level ℓ , two cases arise. Either ℓ0 is observable at ℓ , i.e. ℓ0 ≤ ℓ , in

which case we revert to indistinguishability due to rule CGE-Leq, or ℓ0 is not observable at ℓ , in

which case we immediately conclude that the terms are indistinguishable due to rule CGE-NLeq.

As a result, the lower the observer level, the coarser, or more general, indistinguishability becomes,

since there are more opportunities where rule CGE-NLeq is applicable.

Rule GE-AppAbs is the 𝛽-rules for functions, and the remaining rules make indistinguishability

reflexive, symmetric, transitive, and congruent. The box type, defined earlier as syntactic sugar

for dependent pairs, has the following admissible equality rules. The example · ⊢ boxH false ≡L

boxH true from above holds by rules GE-Box and CGE-NLeq since H ≰ L.

GE-T

Φ ⊢ A ≡ℓ B

Φ ⊢ 𝑇 ℓ0 A ≡ℓ 𝑇 ℓ0 B

GE-Box

Φ ⊢ a ≡ℓ
ℓ0
b

Φ ⊢ boxℓ0 a ≡ℓ boxℓ0 b

GE-Unbox

Φ ⊢ a ≡ℓ b ℓ0 ≤ ℓ

Φ ⊢ unboxℓ0 a ≡ℓ unboxℓ0 b

Given Φ ⊢ a ≡H b, it is not necessarily the case that Φ ⊢ a ≡L b. If Φ ⊢ a ≡ℓ b, neither a nor b
may use variables that are unobservable at level ℓ . This restriction is imposed by rule GE-Var and

rules related to projecting from pairs, which mirror similar constraints in the typing judgments.

When lowering ℓ , the typing might become invalid if the observer level becomes too low to access a

variable or project out a dependent pair. On the other hand, given Φ ⊢ a ≡L b, it is not necessarily the
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Φ ⊢ a ≡ b (Definitional equality)

E-One

Φ ⊢ a ≡ℓ b

Φ ⊢ a ≡ b

E-Trans

Φ ⊢ a ≡ b0 Φ ⊢ b0 ≡ b

Φ ⊢ a ≡ b

Φ ⊢ a ≡ℓ b (Indistinguishability)
GE-Var

ℓ0 ≤ ℓ x : ℓ0 inΦ

Φ ⊢ x ≡ℓ x

GE-Type

Φ ⊢ s ≡ℓ s

GE-Sym

Φ ⊢ a ≡ℓ b

Φ ⊢ b ≡ℓ a

GE-Trans

Φ ⊢ a ≡ℓ b0
Φ ⊢ b0 ≡ℓ b

Φ ⊢ a ≡ℓ b

GE-App

Φ ⊢ b0 ≡ℓ b1
Φ ⊢ a0 ≡ℓ

ℓ0
a1

Φ ⊢ b0 a0ℓ0 ≡ℓ b1 a1ℓ0

GE-Abs

Φ, x : ℓ0 ⊢ b0 ≡ℓ b1
Φ ⊢ 𝜆x :ℓ0 A0 . b0 ≡ℓ 𝜆x :ℓ0 A1. b1

GE-AppAbs

Φ ⊢ a ≡ℓ 𝜆x :ℓ0 A. a0
Φ ⊢ b0 ≡ℓ

ℓ0
b1

Φ ⊢ a b0ℓ0 ≡ℓ a0{b1/x}

GE-Pi

Φ ⊢ A0 ≡ℓ A1

Φ, x : ℓ0 ⊢ B0 ≡ℓ B1
Φ ⊢ Πx :ℓ0 A0 . B0 ≡ℓ Πx :ℓ0 A1. B1

GE-TyUnit

Φ ⊢ Unit ≡ℓ Unit

GE-TmUnit

Φ ⊢ unit ≡ℓ unit

GE-Proj1Cong

Φ ⊢ a0 ≡ℓ a1 ℓ0 ≤ ℓ

Φ ⊢ 𝜋 ℓ0
1
a0 ≡ℓ 𝜋

ℓ0
1
a1

GE-Proj2Cong

Φ ⊢ a0 ≡ℓ a1

Φ ⊢ 𝜋 ℓ0
2
a0 ≡ℓ 𝜋

ℓ0
2
a1

GE-Proj1Beta

Φ ⊢ b ≡ℓ (a1ℓ0 , a2)
ℓ0 ≤ ℓ

Φ ⊢ 𝜋 ℓ0
1
b ≡ℓ a1

GE-Proj2Beta

Φ ⊢ b ≡ℓ (a1ℓ0 , a2)
Φ ⊢ 𝜋 ℓ0

2
b ≡ℓ a2

GE-SPair

Φ ⊢ a0 ≡ℓ
ℓ0
a1

Φ ⊢ b0 ≡ℓ b1
Φ ⊢ (a0ℓ0 , b0) ≡ℓ (a1ℓ0 , b1)

GE-SSigma

Φ ⊢ A0 ≡ℓ A1

Φ, x : ℓ0 ⊢ B0 ≡ℓ B1
Φ ⊢ Σx:ℓ0A0 . B0 ≡ℓ Σx:ℓ0A1. B1

Φ ⊢ a ≡ℓ
ℓ0
b (Guarded indistinguishability)

CGE-Leq

ℓ0 ≤ ℓ Φ ⊢ a ≡ℓ b

Φ ⊢ a ≡ℓ
ℓ0
b

CGE-NLeq

ℓ0 ≰ ℓ

Φ ⊢ a ≡ℓ
ℓ0
b

Fig. 4. Equality rules (selected)

case that Φ ⊢ a ≡H b. By raising ℓ , the equivalence becomes finer, as more subterms are observable.

As a result, given an arbitrary derivation of Φ ⊢ a ≡ℓ b, we can neither raise nor lower ℓ .

Hence the label ℓ in indistinguishability not only controls how fine-grained the equality is but

also records the usage of variables in the two terms being equated, enforcing an untyped version

of dependency tracking. The coupling of the two purposes within the same label may appear

restrictive as we cannot easily raise or lower the labels, but it is necessary to ensure that DCOI

is type sound. If we remove the restriction imposed by rule GE-Var, we could end up converting
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between two arbitrary types A and B through this chain of equalities:

A ≡L (𝜆x :H★. x) AH ≡L (𝜆x :H★. x) BH ≡H 𝐵

Without the inequality constraint in rule GE-Var, the lambda term 𝜆x :H★. x would be allowed to

appear in the first equality labeled at L. With the observer level set to L, we can derive the second

equality without having to show that A and B are equal. By instantiating A and B to two types with

distinct head forms, we could easily derive a program that crashes in DCOI.

3.4 Indexed Equality Type

Γ ⊢ a :
ℓ A (Typing: equalities)

T-CEq

Γ ⊢ a :
ℓ1 A Γ ⊢ b :

ℓ1 A
Γ ⊢ A :

ℓ2 s1
(s1, s2) ∈ R∼

ℓ1 ≤ ℓ0 ℓ0 ≤ ℓ

Γ ⊢ (a ∼ℓ0 b ∈ℓ1 A) :ℓ s2

T-Refl

Γ ⊢ (a ∼ℓ0 a ∈ℓ1 A) :ℓ2 s
Γ ⊢ refl :

ℓ (a ∼ℓ0 a ∈ℓ1 A)

T-Transp

Γ, x :ℓ1 A ⊢ B :
ℓ0 s

Γ ⊢ a :
ℓ (a0 ∼ℓ0 a1 ∈ℓ1 A)

Γ ⊢ b :
ℓ B{a0/x}

Γ ⊢ transp a b :
ℓ B{a1/x}

Fig. 5. Typing rules for indexed equalities

The indexed equality type internalizes the indistinguishability judgment so programmers can

reason about indistinguishability within DCOI itself. The typing and equality rules related to the

equality type can be found in Figure 5 and 6. Ignoring the levels, the rules for the indexed equality

rules in DCOI closely correspond to the rules for identity types from MLTT [Martin-Löf 1975].

An indexed equality type takes the form a ∼ℓ0 b ∈ℓ1 A and is well formed when it satisfies the

conditions specified in rule T-CEq. The binary relation R∼ is analogous to RΠ for function types

and determines the sort we can assign to an equality type. Both a and b must have type A with ℓ1 as

their observer level. The level ℓ0 indicates the observer level at which a and b are compared and can

be distinct from ℓ1, though it must satisfy the constraint that ℓ1 ≤ ℓ0. The ℓ1 ≤ ℓ0 constraint will be

explained when we introduce the elimination form for the equality type. We defer the discussion

of the second constraint ℓ0 ≤ ℓ to Section 5 since its explanation requires some background on the

metatheoretic properties of DCOI. Similar to the introduction rule of the identity type from MLTT,

a trivial refl proof witnesses the reflexive indistinguishability through rule T-Refl, provided that

the equality type is well formed.

Rule T-Transp allows us to eliminate an equality proof based on the (specialized) congruence

property of indistinguishability: for ℓ0 ≤ ℓ , if Φ, x : ℓ0 ⊢ B0 ≡ℓ B1 and Φ ⊢ a0 ≡ℓ a1, then
Φ ⊢ B0{a0/x} ≡ℓ B1{a1/x}. Given a motive B and an equality proof a between the terms a0 and a1,
rule T-Transp can convert a term b of type B{a0/x} to a term of type B{a1/x}. The observer level
ℓ0 from the equality type matches the observer level of the motive B, whereas the level ℓ1 matches

the level associated with the variable x.
The congruence property of indistinguishability requires us carefully to constrain the observer

levels so we do not accidentally convert between incompatible types. If B0 and B1 are indistinguish-
able at level ℓ , then we cannot substitute in a0 and a1 if they are indistinguishable at level ℓ0 such

that ℓ0 < ℓ . To see why this is problematic, consider the following two judgments.

x : L ⊢ unboxH x ≡H unboxH x · ⊢ boxH false ≡L boxH true
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The first judgment is true because both sides are identical. The second judgment is true since false
and true both appear in high-level boxes and are thus indistinguishable for a low-level observer.

If we were allowed to substitute the second equation for 𝑥 in the first one, we would be able to

derive · ⊢ unboxH (boxH false) ≡H unboxH (boxH true). By reducing each side, we end up proving

that · ⊢ false ≡H true. In general, if B0 and B1 are indistinguishable at level ℓ , then we want to only

substitute in an indistinguishability judgment that is not too coarse for the level ℓ .

Finally, given an equality type a ∼ℓ0 b ∈ℓ1 A, due to the constraint ℓ1 ≤ ℓ0 in rule T-CEq, rule T-

Transp can only be applied when ℓ1 ≤ ℓ0, so we are only allowed to eliminate an indexed equality

if the level ℓ1 of the term we are substituting is bounded above by the level of the motive. This

constraint does not limit the expressiveness of DCOI but is convenient for our proofs. When ℓ1 ≰ ℓ0,

the variable x can only appear in B in contexts, such as the argument to a function, where the level is

high enough to use x. In that case, B{a0/x} and B{a1/x} are indistinguishable at level ℓ0 by equating
the subterms containing a0 and a1 through rule CGE-NLeq from guarded indistinguishability. We

can then assign type B{a1/x} to 𝑎 by rule T-Conv directly without using rule T-Transp. We make

this intuition formal in Section 4 through the full congruence property of indistinguishability

(Lemma 4.5).

Φ ⊢ a ≡ℓ b (Indistinguishability: equalities)

GE-CEq

Φ ⊢ a0 ≡ℓ a1 Φ ⊢ b0 ≡ℓ b1 ℓ0 ≤ ℓ

Φ ⊢ a0 ∼ℓ0 b0 ∈ℓ1 A0 ≡ℓ a1 ∼ℓ0 b1 ∈ℓ1 A1

GE-TranspRefl

Φ ⊢ a0 ≡ℓ refl Φ ⊢ b0 ≡ℓ b1
Φ ⊢ transp a0 b0 ≡ℓ b1

GE-Transp

Φ ⊢ a0 ≡ℓ a1 Φ ⊢ b0 ≡ℓ b1
Φ ⊢ transp a0 b0 ≡ℓ transp a1 b1

GE-Refl

Φ ⊢ refl ≡ℓ refl

Fig. 6. Equality rules for indexed equalities

Figure 6 shows the indistinguishability rules for indexed equality. When used in conjunction

with rule GE-CEq, rule T-Refl allows us to use the refl constructor to witness the equality between

the two terms a and b at observer level ℓ if we can show that Φ ⊢ a ≡ℓ b. This is analogous to how

the reflexivity proof term can witness the equality between two 𝛽-equivalent terms in Martin-Löf

type theory. In rule GE-CEq, the precondition requires that the observer level ℓ0 of the equality

type be lower than the observer level ℓ of the judgment. Moreover, the observer level used for the

equalities in the preconditions is ℓ rather than ℓ0 even though ℓ0 is the one labeled on the equality

types. We will explain the subtleties behind the choice of labels in rule GE-CEq in Section 5.2.

4 METATHEORY
In this section, we present our main results, including type soundness (Theorem 4.24 and 4.29) and

noninterference (Theorem 4.31), with pointers to the corresponding Coq proof file and name in the

footnote. To formulate these properties, we first define the operational semantics and the syntax of

values in Figure 7. This figure includes the 𝛽-rules only—the compatibility rules are standard for a

call-by-name language. The full reduction rules can be found in the supplementary materials
8
.

8
spec.pdf
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a { b (Reduction)
R-AppAbs

(𝜆x :ℓ0 A. a) bℓ0 { a{b/x}

R-TranspRefl

transp refl a { a

R-Proj1Beta

𝜋 ℓ
1
(a1ℓ , a2) { a1

R-Proj2Beta

𝜋 ℓ
2
(a1ℓ , a2) { a2

R-IfTrue

if true b0 b1 { b0

R-IfFalse

if false b0 b1 { b1

v ::= s | Unit | unit | Πx :ℓ A. B | 𝜆x :ℓ A. a | Σx:ℓA. B | (aℓ , b) | a ∼ℓ b ∈ℓ0 A | refl | B | true | false

Fig. 7. Reduction (𝛽-rules only) and values

4.1 Structural Lemmas
The system supports the standard structural rules such as weakening and narrowing. Since rule T-

Conv depends on the definitional equality judgment, we need to first establish the structural lemmas

for definitional equality and indistinguishability before we can derive the structural lemmas for the

typing judgment.

Lemma 4.1 (Indistinguishability Weakening
9
). If Φ ⊢ a ≡ℓ b, then Φ,Φ0 ⊢ a ≡ℓ b.

Lemma 4.2 (DefEq weakening
10
). If Φ ⊢ a ≡ b, then Φ,Φ0 ⊢ a ≡ b.

In both weakening lemmas, we use Φ,Φ0 to indicate the concatenation of two erased contexts

with disjoint and unique domains.

The narrowing property says that equalities still hold after lowering the levels of the variables in

the context.

Lemma 4.3 (Indistinguishability Narrowing
11
). If Φ ⊢ A ≡ℓ B and Φ0 ≤ Φ, then Φ0 ⊢ A ≡ℓ B.

Lemma 4.4 (DefEq Narrowing
12
). If Φ ⊢ A ≡ B and Φ0 ≤ Φ, then Φ0 ⊢ A ≡ B.

The relation Φ0 ≤ Φ compares pointwise the levels of two erased contexts with the same domain.

Unlike for the weakening and narrowing properties, indistinguishability and definitional equality

behave differently when it comes to congruence. The congruence lemma for indistinguishability is

defined as follows.

Lemma 4.5 (GDefEq Congruence
13
). If Φ, x : ℓ0 ⊢ a0 ≡ℓ a1 and Φ ⊢ b0 ≡ℓ

ℓ0
b1, then Φ ⊢

a0{b0/x} ≡ℓ a1{b1/x}.

It is crucial that the label ℓ from the guarded indistinguishability judgment matches the observer

level from the indistinguishability judgment. The guarded indistinguishability we are substituting

in must be as fine as the level of the indistinguishability judgment or we may equate two terms

with differing head forms. Given Φ, x : ℓ0 ⊢ a0 ≡ a1, its derivation may consist of a sequence of

indistinguishability judgments with different observer levels. As a result, we cannot formulate a

congruence property for definitional equality in a manner similar to Lemma 4.5.

Lemma 4.6 (DefEq Congruence
14
). If Φ, x : ℓ0 ⊢ a0 ≡ a1, Φ ⊢ b0 ≡ℓ0 b1, and b0 is 𝛽-equivalent to

b1, then Φ ⊢ a0{b0/x} ≡ a1{b1/x}.
9 defeq_weak.v:gdefeq_weak_nil 10 defeq_weak.v:defeq_weak_nil 11 narrow.v:gdefeq_narrow
12 narrow.v:defeq_narrow 13 defeq_subst.v:gdefeq_cong 14 defeq_subst.v:defeq_cong
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Parallel reductions
Φ ⊢ a ⇒ℓ b Indexed parallel reduction ↦→ Φ ⊢ a ≡ℓ b
Φ ⊢ℓℓ0 a ⇒ b Guarded parallel reduction ↦→ Φ ⊢ a ≡ℓ

ℓ0
b

Φ ⊢ a ⇒ b Parallel reduction ↦→ Φ ⊢ a ≡ b

Fig. 8. Summary of the parallel reduction judgments

Since we do not know which observer levels are used underneath the derivation of Φ, x : ℓ0 ⊢ a0 ≡
a1, we can only make the worst-case assumption that we cannot skip any comparison between the

subterms in b0 and b1. That is why Lemma 4.6 additionally requires that b0 and b1 are 𝛽-equivalent.
Indistinguishability does not include reflexivity as an axiom, but we can prove that reflexivity

holds for well-typed terms.

Lemma 4.7 (Typing Indistinguishability
15
). If Γ ⊢ a :

ℓ A, then |Γ | ⊢ a ≡ℓ a.

Now we are ready to prove some properties about the typing judgments. The proofs follow the

same structure as their equality counterparts by induction over the derivation, though they rely on

the structural rules about equalities proven earlier.

Lemma 4.8 (Narrowing
16
). If Γ ⊢ a :

ℓ A and Γ0 ≤ Γ, then Γ0 ⊢ a :
ℓ A.

Subsumption (Lemma 3.1) and weakening both follow from Lemma 4.8.

Lemma 4.9 (Weakening
17
). If Γ1 ⊢ a :

ℓ A and ⊢ Γ1, Γ2, then Γ1, Γ2 ⊢ a :
ℓ A.

We can now prove the substitution property for the typing judgment through structural induction

over derivations.

Lemma 4.10 (Substitution
18
). If Γ, x :ℓ0 A ⊢ b :

ℓ B and Γ ⊢ a :
ℓ0 A, then Γ ⊢ b{a/x} :ℓ B{a/x}.

The rule T-Var case of Lemma 4.10 relies on Lemma 3.1 since we may substitute in a term with a

lower level when ℓ0 ≤ ℓ . The rule T-Conv case requires us to show that |Γ | ⊢ A{a/x} ≡ B{a/x}
given |Γ |, x : ℓ0 ⊢ A ≡ B and Γ ⊢ a :

ℓ0 A. This can be done by composing Lemma 4.6 and Lemma 4.7.

4.2 Preservation
Similar to the preservation proof for PTS, preservation in DCOI requires inversion lemmas about

the typing judgment and injectivity lemmas about the definitional equality judgment.

The inversion lemmas witness the fact that given Γ ⊢ v :
ℓ A, the derivation must consist of the

introduction rule for v nested under zero or more instances of the conversion rule. The proofs

for those lemmas, with the exception of the refl form, can be carried out by induction over the

derivation. For now, we only show the inversion lemma for abstractions and defer the explanation

of the refl case until we discuss the injectivity properties; the rest of the inversion lemmas follow

the same pattern and are thus omitted.

Lemma 4.11 (Inversion (Abs)
19
). If Γ ⊢ (𝜆x :ℓ0 A. b) :ℓ A0, then there exists a term B such that the

following conditions hold:
• Γ, x :ℓ0 A ⊢ b :

ℓ B
• |Γ | ⊢ Πx :ℓ0 A. B ≡ A0

• Γ ⊢ A0 :
ℓ1 s for some level ℓ1 and some sort s

15 typing_defeq.v:typing_gdefeq 16 narrow.v:typing_narrow 17 weak.v:typing_weak_nil
18 subst.v:typing_subst_nil 19 inv.v:typing_abs_inv
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To prove preservation for 𝛽-rules such as rules R-AppAbs and R-TranspRefl (Figure 7), we

need to prove some injectivity lemmas about definitional equality. For example, to prove that

rule R-AppAbs is type preserving, we need to show that the two definitionally equal function

types must also have definitionally equal argument types and return types. A similar proof can be

found in the preservation proof for PTS, where definitional equality is defined as 𝛽-equivalence. To

prove the injection lemma for function types in a PTS, one needs to first prove the Church-Rosser

property, which states that two terms are 𝛽-equivalent if and only if they can strongly reduce to

the same term within a finite number of steps. The injection lemma then immediately follows since

a reduction sequence starting from a function type can only consist of repeated reductions of its

argument type or return type.

We adapt the proof technique and prove the equivalence between the equality judgments and

their corresponding parallel reduction relations, summarized in Figure 8. Each reduction relation

corresponds to the equivalence relation in the following sense: given two terms a0 and a1, the
terms a0 and a1 are equivalent if and only if there exists some term b such that a0 and a1 both
reduce to b after a finite number of steps. We omit the rules for the parallel reduction relations

since they closely correspond to the equality rules in Figure 4. The rules for each parallel reduction

relation can be obtained from the corresponding equivalence rule by removing the transitivity

and symmetry rules and replacing ≡ with⇒. These parallel reduction rules can be found in the

supplementary materials
20
. We also omit the structural lemmas for the reduction relations since

their specifications and proofs can be obtained with a similar replacement.

Similar to the indistinguishability judgment, given Φ ⊢ a ⇒ℓ b, neither a nor b is allowed to

use variables from Φ that are not observable at level ℓ . The following shows that if Φ ⊢ a ⇒ℓ b or
Φ ⊢ a ≡ℓ b, then indexed parallel reduction is reflexive on both a and b.

Lemma 4.12 (Par Reflexive
21
). If Φ ⊢ a ⇒ℓ b, then Φ ⊢ a ⇒ℓ a and Φ ⊢ b ⇒ℓ b.

Lemma 4.13 (Indistinguishability Par Reflexive
22
). If Φ ⊢ a ≡ℓ b, then Φ ⊢ a ⇒ℓ a and

Φ ⊢ b ⇒ℓ b.

Both lemmas follow from induction on the derivation of the premise.

Indexed parallel reduction generalizes 𝛽-reduction in the same way that indistinguishability

generalizes 𝛽-equivalence. It is possible to embed the 𝛽-reduction relation into the parallel reduction

relation.

Lemma 4.14 (Red Embed Par
23
). If a { b and there exists some b0 such that Φ ⊢ a ⇒ℓ b0, then

Φ ⊢ a ⇒ℓ b.

In Lemma 4.14, the precondition Φ ⊢ a ⇒ℓ b0 tells us that a does not use variables with labels

not observable at ℓ . It provides us a context and a label at which we can reduce from a to b
through indexed parallel reduction. The precondition Φ ⊢ a ⇒ℓ b0 can be supplied through the

well-typedness of a by composing Lemma 4.7 and Lemma 4.13.

From the structural lemmas, we can show that indexed parallel reduction satisfies the following

confluence property.

Lemma 4.15 (Indexed Par Confluence
24
). If Φ ⊢ a ⇒ℓ b0 and Φ ⊢ a ⇒ℓ b1, then there exists

some b2 such that Φ ⊢ b0 ⇒ℓ b2 and Φ ⊢ b1 ⇒ℓ b2.

Before we can use Lemma 4.15 to derive the confluence property of parallel reduction, we need

to first show the following downgrade property about indexed parallel reduction.

20
spec.pdf

21 par.v:Par_grade_mutual 22 defeq_proj.v:gdefeq_grade 23 preservation.v:red_embed
24 par.v:Par_confluence
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Lemma 4.16 (Indexed Par Downgrade
25
). If Φ ⊢ a ⇒ℓ b0 and Φ ⊢ a ⇒ℓ0 b1, then Φ ⊢ a ⇒ℓ∧ℓ0 b0.

The term b1 does not appear in the conclusion. The only information we need from the premise

Φ ⊢ a ⇒ℓ0 b1 is that a has ℓ0 as its observer level. The proof proceeds by induction over the

derivation and leverages the fact that ℓ ∧ ℓ0 is the greatest lower bound.

Confluence of parallel reduction then follows as a corollary of Lemmas 4.15 and 4.16.

Lemma 4.17 (Par Confluent
26
). If Φ ⊢ a ⇒ b0 and Φ ⊢ a ⇒ b1, then there exists some b2 such

that Φ ⊢ b0 ⇒ b2 and Φ ⊢ b1 ⇒ b2.

The proof proceeds by unfolding the definition of parallel reduction. This gives us Φ ⊢ a ⇒ℓ b0
and Φ ⊢ a ⇒ℓ0 b1 for some ℓ and ℓ0. By applying Lemma 4.16 twice, we can conclude that

Φ ⊢ a ⇒ℓ∧ℓ0 b0 and Φ ⊢ a ⇒ℓ∧ℓ0 b1. The conclusion then follows immediately by applying

Lemma 4.15.

Once Lemma 4.17 is proven, we can easily show that two terms are definitionally equal if and

only if they parallel reduce to the same term.

Lemma 4.18 (DefEq Join
27
). Φ ⊢ a0 ≡ a1 if and only if there exists some b such that Φ ⊢ a0 ⇒∗ b

and Φ ⊢ a1 ⇒∗ b.

The backward direction is trivial since it is possible to embed parallel reduction into definitional

equality by simply unfolding definitions. The forward direction uses Lemma 4.17 to finish the

rule E-Trans case and the rest of the cases are straightforward.

The injectivity lemmas for the function types and dependent sum types follow as corollaries of

Lemma 4.18.

Lemma 4.19 (DefEq Π-Inj128). If Φ ⊢ Πx :ℓ0 A0. B0 ≡ Πx :ℓ0 A1 . B1, then Φ ⊢ A0 ≡ A1.

Lemma 4.20 (DefEq Π-Inj229). If Φ ⊢ Πx :ℓ0 A0. B0 ≡ Πx :ℓ0 A1 . B1, then Φ, x : ℓ0 ⊢ B0 ≡ B1.

Lemma 4.21 (DefEq Σ-Inj130). If Φ ⊢ Σx:ℓ0A0. B0 ≡ Σx:ℓ0A1 . B1, then Φ ⊢ A0 ≡ A1.

Lemma 4.22 (DefEq Σ-Inj231). If Φ ⊢ Σx:ℓ0A0. B0 ≡ Σx:ℓ0A1. B1, then Φ, x : ℓ0 ⊢ B0 ≡ B1.

Furthermore, Lemma 4.18 allows us to show the following strengthened inversion lemma about

the indexed equality type.

Lemma 4.23 (Refl GDefEq
32
). If Γ ⊢ refl :

ℓ a ∼ℓ0 b ∈ℓ1 A, then |Γ | ⊢ a ≡ℓ0 b.

In the proof of Lemma 4.23, Lemma 4.18 is used to show that given |Γ | ⊢ a0 ∼ℓ0 b0 ∈ℓ1 A ≡ a ∼ℓ0

b ∈ℓ1 A, we can conclude that |Γ | ⊢ a0 ≡ℓ0 a and |Γ | ⊢ b0 ≡ℓ0 b.
Now, we can finally show that the reduction relation is type preserving.

Theorem 4.24 (Preservation
33
). If Γ ⊢ a :

ℓ A and a { b, then Γ ⊢ b :
ℓ A.

The proof of Theorem 4.24 is carried out by structural induction over the reduction relation. The

inversion lemmas are applied to the premise Γ ⊢ a :
ℓ A to gain information about the derivation. The

injectivity lemmas are needed for the cases that involve 𝛽-rules. The case for the second projection

needs some special treatment. As part of the proof, given Γ ⊢ a :
ℓ Σx:ℓ0A. B and a { a0, we need

to prove that 𝜋
ℓ0
2

a0 can be assigned the type B{𝜋 ℓ0
1

a/x}. From rule T-Proj2 and the inductive

hypothesis, we can show that Γ ⊢ 𝜋 ℓ0
2
a0 :ℓ B{𝜋 ℓ0

1
a0/x}. To finish off the proof, we use Lemma 4.14

to inject the reduction into the indistinguishability relation to show that B{𝜋 ℓ0
1
a/x} is definitionally

equal to B{𝜋 ℓ0
1
a0/x}.

25 par.v:Par_downgrade_mutual 26 par.v:EPar_confluence 27 defeq_proj.v:defeq_ejoins_iff
28 defeq_proj.v:defeq_pi_proj1 29 defeq_proj.v:defeq_pi_proj2 30 defeq_proj.v:defeq_sigma_proj
31 defeq_proj.v:defeq_sigma_proj 32 preservation.v:typing_refl_gdefeq
33 preservation.v:preservation
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4.3 Progress
Before we prove progress, it is useful to derive the following simple corollary of Lemma 4.18.

Lemma 4.25 (DefEq Consistency
34
). If Φ ⊢ v0 ≡ v1, then v0 and v1 have the same head form.

By Lemma 4.18, v0 and v1 can reduce to the same term through parallel reduction. However,

since parallel reduction preserves head forms, v0 and v1 cannot have conflicting head forms or it

would be impossible to reduce them to the same term.

Lemma 4.25, when combined with the inversion lemmas from Section 4.2, can be used to prove

the following canonical form lemmas.

Lemma 4.26 (Π-Canon35
). If Γ ⊢ v :

ℓ Πx :
ℓ0 A. B, then there exists some A0 and a0 such that

v = 𝜆x :ℓ0 A0. a0 .

Lemma 4.27 (Σ-Canon36
). If Γ ⊢ v :

ℓ Σx :ℓ0 A0. B0, then there exists some a0 and a1 such that
v = (a0ℓ0 , a1).

Lemma 4.28 (Eq-Canon
37
). If Γ ⊢ v :

ℓ b0 ∼ℓ0 b1 ∈ℓ1 A, then v = refl.

We can now conclude our type soundness proof by showing the progress theorem.

Theorem 4.29 (Progress
38
). If Γ ⊢ a :

ℓ A, then a is a value or there exists some b such that a { b.

The proof proceeds by induction over the derivation Γ ⊢ a :
ℓ A. Each non-value case can be

discharged with the help of its corresponding canonical form lemma.

Theorem 4.24 and 4.29 complete our type soundness result. A simple corollary of the type

soundness result is the erasability of the levels that appear in the term syntax. For example, the level

ℓ0 in the application form a bℓ0 can block rule R-AppAbs if it mismatches the level of the lambda

term. Preservation and progress imply that a well-typed term’s execution will never be blocked

by mismatching levels. Since blocking 𝛽-rules is the only way the levels can affect reduction, we

can safely erase the levels before running a well-typed term. However, levels are still necessary for

definitional equality and indistinguishability because those relations are untyped. Refactoring to

use a typed indistinguishability relation might allow us to remove the levels from the term syntax

completely, and we leave that as part of our future work.

4.4 Noninterference
In DCOI, one can formulate the following simulation property in terms of indistinguishability. It

states that programs that are indistugishable remain indistinguishable during evaluation.

Lemma 4.30 (Simulation
39
). If Φ ⊢ a0 ≡ℓ b0, a0 {∗ a1, and b0 {∗ b1, then Φ ⊢ a1 ≡ℓ b1.

Theorem 4.30 is easily derivable from Lemma 4.14 and Lemma 4.12. The conclusion of Lemma 4.30

does not immediately tell us much about the relation between a1 and b1 since indistinguishability
incorporates both reduction and irrelevance.

However, when combined with Lemma 4.18, Lemma 4.30 imposes very strong constraints on

how two indistinguishable programs may behave after evaluation. With the boolean type, we

formulate the following noninterference theorem, which states that two indistinguishable boolean

computations reduce to the same boolean value.

Theorem 4.31 (Noninterference
40
). If · ⊢ a ≡ℓ b, · ⊢ a :

ℓ B, · ⊢ b :
ℓ B, a {∗ v0, and b {∗ v1,

then v0 = v1.
34 defeq_par.v:defeq_consist 35 progress.v:typing_pi_canon 36 progress.v:typing_ssigma_canon
37 progress.v:typing_ceq_canon 38 progress.v:progress 39 preservation.v:simulation
40 progress.v:non_interference
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5 DISCUSSION
5.1 Incompatibility between Indistinguishability and the Upgrade Property
Consider these variants of rules T-App and T-Abs, with argument level ℓ ∨ ℓ0 instead of ℓ .

T-AppJoin

Γ ⊢ b :
ℓ Πx :ℓ0 A. B Γ ⊢ a :

ℓ∨ℓ0 A

Γ ⊢ b aℓ0 :ℓ B{a/x}

T-AbsJoin

Γ, x :ℓ∨ℓ0 A ⊢ b :
ℓ B Γ ⊢ (Πx :ℓ∨ℓ0 A. B) :ℓ1 s

Γ ⊢ 𝜆x :ℓ0 A. b :
ℓ Πx :ℓ0 A. B

Compared to the corresponding rules from DCOI, the alternative rules are more permissive. The

following judgment is derivable with the alternative rules but not the existing ones.

y :HB ⊢ (𝜆x :LB. x) yL :H B
With rule T-App, the application is illegal because the argument y is type checked at L but y can

only be used when the observer level is H. However, with rule T-AppJoin, the level for type checking

the argument is the join of the observer level H and the annotation L, so the example holds.

The variant of rule T-App and rule T-Abs that raises the argument level to be at least high as the

observer level can be found in systems that track either dependency or usage, such as QTT [Atkey

2018] (after instantiating to the boolean semiring) and extensions of DCC [Abadi et al. 1999],

including DCC
pc

[Tse and Zdancewic 2004], the sealing calculus [Shikuma and Igarashi 2008], and

DDC [Choudhury et al. 2022]. Notably, the alternative rules still satisfy noninterference.

In earlier iterations of DCOI, we opted for rule T-AppJoin and rule T-AbsJoin. However, we

found that these rules were incompatible with the use of indistinguishability for conversion, since

the system no longer admitted the subsumption property. Consider the following function 𝑓 that

type checks with both the alternative and existing rules.

· ⊢ 𝜆x :L (BH → ★). 𝜆y :L ((x trueH)L → B). 𝜆z :L (x falseH). y zL :L B

In the example above, since x falseH and x trueH are indistinguishable at level L, we are allowed to

pass z, a term with type x falseH, as an argument to y, a function which expects something with

type x trueH.
If subsumption holds, we can type check 𝑓 at level H. However, we run into a problem when we

try to apply 𝑓 using rule T-AppJoin: the first argument for 𝑓 is type checked at H∨ L, where H is the
observer level of 𝑓 after applying subsumption and L is the annotation from the lambda. That is, the

alternative type system would accept any term a as an argument for 𝑓 as long as · ⊢ a :
H BH → ★.

But since a is typed at H, it can produce different types by pattern matching against its input. By

instantiating a properly, 𝑓 would allow us to convert between two arbitrary types! On the other

hand, with our existing rules, we enforce that a is well typed at L regardless of the observer level,
so a will always behave like a constant function even after applying subsumption.

The above contradiction can also be phrased in terms of the incompatibility between indistin-

guishability and the following, which we informally refer to as the upgrade property.

Proposition 5.1 (Upgrade property, does not hold for DCOI). If Γ ⊢ b :
ℓ A, then ℓ∨Γ ⊢ b :

ℓ A,
where ℓ ∨ Γ is an operation that joins the levels in Γ pointwise against the level ℓ .

The proposition states that raising the levels in the context to the observer level does not make

the term b more difficult to type check. Suppose we have x :L BH → ★ in the typing context Γ.
Then, the derivation of b could convert between x falseH and x trueH via indistinguishability. By
applying the upgrade property, however, we end up with x :HBH → ★ and x can no longer be used

at observer level L in that derivation. As a result, the upgrade property does not hold in DCOI.

In both QTT and DDC, we can find lemmas that capture the same idea as the upgrade property.

In QTT, the upgrade property holds when its semiring structure is instantiated to {0, 1}, the boolean
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semiring. In DDC, the upgrade property is more interesting. DDC is parameterized by some lattice

structure L and additionally adds a two-point lattice {𝐶,⊤} on top of L such that ℓ < 𝐶 < ⊤ for

all ℓ ∈ L. Like DCOI, DDC uses indistinguishability as part of its conversion rule; however, the

observer level for indistinguishability in the conversion rule is always 𝐶 . In fact, DDC treats the

level {𝐶,⊤} differently compared to the levels from the lattice L.

The upgrade property in DDC only holds when the level ℓ is less than or equal to𝐶 . The disjoint

treatment between {𝐶,⊤} andL in DDC is consistent with our finding: since the lower levels satisfy

the upgrade property, indistinguishability can no longer be used for conversion at those levels. In

contrast, by abandoning rules T-AppJoin and T-AbsJoin and therefore the upgrade property, DCOI

can use indistinguishability for conversion at any level in the lattice.

5.2 Order Constraints for Indexed Equality Types
We explain the necessity of the ordering constraint ℓ0 ≤ ℓ that appears in rule GE-CEq.

GE-CEq

Φ ⊢ a0 ≡ℓ a1 Φ ⊢ b0 ≡ℓ b1 ℓ0 ≤ ℓ

Φ ⊢ a0 ∼ℓ0 b0 ∈ℓ1 A0 ≡ℓ a1 ∼ℓ0 b1 ∈ℓ1 A1

In rule GE-CEq, to show that the two equality types a0 ∼ℓ0 b0 ∈ℓ1 A0 and a1 ∼ℓ0 b1 ∈ℓ1 A1 are

equal, the endpoints a0, a1 and b0, b1 are compared pointwise at the observer level ℓ , where ℓ is

constrained to be greater than or equal to the observer level ℓ0 of the equality type. The premise of

rule GE-CEq does not require any relation between A0 and A1 since they are type annotations.

It is tempting to simplify rule GE-CEq into the following.

GE-CEqWrong

Φ ⊢ a0 ≡ℓ0 a1 Φ ⊢ b0 ≡ℓ0 b1
Φ ⊢ a0 ∼ℓ0 b0 ∈ℓ1 A0 ≡ℓ a1 ∼ℓ0 b1 ∈ℓ1 A1

Compared to rule GE-CEq, this simplified version completely ignores the observer level ℓ in the

premises and instead uses the level ℓ0 to compare the subterms. The issue with this design is that

it breaks the congruence property of indistinguishability (Lemma 4.5). Consider the following

derivable judgment with rule GE-CEqWrong.

x : H ⊢ (x ∼H true ∈H B) ≡L (x ∼H true ∈H B)

Since H ≰ L, we can derive the vacuously true guarded indistinguishability · ⊢ false ≡L
H true. If

Lemma 4.5 holds, then we can apply substitution and derive this indistinguishability judgment.

· ⊢ (false ∼H true ∈H B) ≡L (true ∼H true ∈H B)

The equality on the left is bogus, but the equality on the right is true by reflexivity. We could thus

inhabit the equality type false ∼H true ∈H B with refl by composing rule T-Refl and rule T-Conv

with the indistinguishability judgment from above. By eliminating the bogus proof term, we could

easily derive a crashing program.

The problem with rule GE-CEqWrong is that the two equality types have their own notion of

indistinguishability based on the level ℓ0, which is now independent of the observer level ℓ . The

congruence lemma allows us to substitute in an equality that is sensible for an observer at level ℓ .

However, if ℓ < ℓ0, then the equality being substituted in is too coarse for an observer at level ℓ0. In

the counterexample above, the variable x is labeled with level H. From an L observer’s perspective,

false and true are indistinguishable when guarded by the level H. However, from the H observer’s
perspective, false and true are distinct when guarded by the level H. The mismatch between the
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notion of equivalence allows us to break type soundness in a way similar to the unbox example

from Section 3.4.

To address this problem, rule GE-CEq restricts the observer level of the equality type to be at

most the observer level of the judgment. The same constraint ℓ0 ≤ ℓ found in rule T-CEq is a direct

consequence of the constraint in rule GE-CEq since we need the order constraint in the typing rule

to derive Lemma 4.7.

5.3 Irrelevance, Relatively
To talk about whether two terms are indistinguishable, we must choose an observer level. Terms

that are indistinguishable at L might be distinguishable at H. So, irrelevance in DCOI is relative. For

example, if · ⊢ a :
L BH → 𝑇 H B, then these terms are both valid candidates for a.

𝜆x :HB. boxH x 𝜆x :HB. boxH false

The second function behaves like a constant function in the traditional sense—the input x does not

appear in the body. The first function is only a constant function if we observe its results at level L.
Consider the filter function on vectors as another example, where unmarked arguments and the

function itself are at level L. Because we do not know the final length of the filtered vector, we

package the vector and its length together in a dependent pair where the first component is at level

H, which we write as (m :H Nat) × Vec A m.

filter : (A : H Type)→ (n : H Nat) → (A → Bool) → Vector A n →
(m :H Nat) × Vector A m

filter A n f v = case v of
Nil ⇒ (0, Nil )
Cons n′ y ys ⇒ let zs = filter A n′ f ys in

if f y then (Succ (𝜋1 zs), Cons (𝜋1 zs) y (𝜋2 zs)) else zs

From the perspective of a run-time observer, the arguments A and n are both irrelevant. However,

for an observer at level H, these arguments are both relevant. In the body of filter, the variable zs is
a pair containing a vector of unknown length. The length index 𝜋1 zs in the pair is irrelevant at

level L; after erasure at level L, filter should have the run-time performance of the filter function
for lists. On the other hand, the length index in the pair is used relevantly in the type of the second

component, Vector A (𝜋1 zs). Because the notion of relevance is relative, we can still make sense

of the filter function even though the length index is used both relevantly and irrelevantly.

5.4 Normalization Proof
In PTS, particular instantiations of the sorts, axioms, and rules lead to systems that are known to

satisfy the strong normalization property. We have not proven normalization for any instance of

DCOI; however, since it is based on PTS, we believe that there is a close correspondence between

the normalization behavior of PTS and of DCOI. If a specific instantiation of the sorts results in

a normalizing PTS, we would expect the same instantiation to result in a normalizing DCOI. In

particular, we expect all instances from the lambda cube [Barendregt 1991] to satisfy the strong

normalization property when reformulated as their corresponding DCOI instance.

Having a normalization proof for such instantiations of sorts is desirable to allow for relevance

tracking with proof erasure. In rule T-Transp, the level of the equality proof must be the same as the

level of the term being cast, so we run into the awkward situation where an irrelevant proof cannot

be used to cast a relevant term. In a system where equality types can be inhabited by a diverging

computation, the proof being eliminated must be treated as relevant since the erasure of a bogus

proof can cause the resulting program to crash. However, if we know that a particular instance of
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DCOI is normalizing, then we are able to justify the elimination of an irrelevant equality proof in a

relevant context through the canonicity of closed equality proofs. Because of its importance, we

will investigate the normalization behavior of DCOI as part of our future work.

6 IMPLEMENTATION
We have implemented a type checker for an instantiation of DCOI with the naturals and its usual

total order as our lattice of labels, and a single type universe Type with type-in-type.
41
The biggest

difference between DCOI and the implementation is that the implementation contains data types,

which subsumes the unit type and dependent pair types. Below is a data definition for dependent

pairs where the first component is fixed to level 1; we use it to discuss some design decisions for

data definitions.

data Pair (A : 0 Type) (B : 0 A1 → Type) : 0 Type where
MkPair :𝑘 (x : 1 A) → (B x)𝑘 →Pair A B

The level of type parameters A and B and of the Pair A B type are fixed to level 0, in contrast to

the primitive dependent pair type of DCOI, which are implicitly level-polymorphic in the sense

that they can be type checked at any level as long as the parameters can be type checked at the

same level. Instead of fixing to level 0, we could assign A and B different levels, as long as the level

of Pair A B is greater than or equal to the larger of these levels. This condition ensures that the

parameters are always relevant: we should not to equate Pair A1 B1 and Pair A2 B2 unless A1,

A2 and B1, B2 are themselves equal. To retain the subsumption property, data types can be used

at any level greater than or equal to the level they are declared at, similar to how variables are

checked by rule T-Var.

On the other hand, constructors are explicitly level-polymorphic: the second component of the

pair is type checked at the same level variable 𝑘 as the overall pair, so that when given a pair

declared at a given level, we can use the second component at the same level. This minimal amount

of polymorphism appears to be sufficient for practical examples. As with rule T-SPair, there is no

relation between the level of pair type and 𝑘 .

Pairs are eliminated by case expressions rather than projections, but projection functions can

still be defined.

proj1 : 1 (A : 0 Type) → (B : 0 A1 → Type) → ( Pair A B)0 → A
proj1 = 𝜆A B p. case p of
MkPair x y ⇒ x

proj2 : 0 (A : 0 Type) → (B : 0 A1 → Type) → (p : 0 Pair A B) → B (proj1 A B p)
proj2 = 𝜆A B p. case p of
MkPair x y ⇒ y

The branches of a case expression must be checked at a level greater or equal to that of the

scrutinee. Intuitively, this prevents extracting relevant information out of something irrelevant. As

a minor detail, in the type of the branch for a given constructor, the scrutinee is replaced by the

constructor pattern, so the branch of proj2 requires a term of type B (proj1 A B (MkPair x y )) ,
reducing to B x, which is exactly the type of y.

If we have pairs at level 0, then as expected, two pairs are indistinguishable at level 0 merely if their

second components are, since their first components (at level 1) are automatically indistinguishable

at this level. With internalized indistinguishability, this can be proven as a lemma.

41
The code in this section has been stylized to match existing examples; the actual concrete syntax is introduced in

README.pi.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 44. Publication date: January 2024.

impl/README.pi


Internalizing Indistinguishability with Dependent Types 44:23

pairEq : 0 (A : 0 Type) → (B : 0 A1 →Type) → (p1 : 0 Pair A B) → (p2 : 0 Pair A B) →
( proj2 A B p1 ∼0 proj2 A B p2) → p1 ∼0 p2

pairEq = 𝜆A B p1 p2 q. case p1 of
MkPair x1 y1 ⇒ case p2 of
MkPair x2 y2 ⇒ transp q refl

In DCOI, definitional equality is the transitive closure of indistinguishability at existentially-

quantified levels; in the implementation, when converting between two types, we simply use

indistinguishability at an arbitrary generated level metavariable at which both types are well typed.

The conversion checker checks guarded indistinguishability Φ ⊢ a ≡ℓ
ℓ0
b by first asking the

constraints whether ℓ < ℓ0 is implied. If so, this corresponds to the rule CGE-NLeq case; otherwise,

it adds ℓ0 ≤ ℓ as a new constraint and continues on as in the rule CGE-Leq case. Conversion

checking is therefore incomplete with respect to the rules, since it may turn out that ℓ < ℓ0 was the

appropriate constraint to add. Adding backtracking might make conversion complete, but it seems

that with explicit level annotations, enough of the guesswork is eliminated.

To accommodate level metavariables, type checking always takes a level as an input, collecting

constraints for generated level metavariables, and solves the level constraints with minimal level

instantiations at the end, or fails with a type error.

7 FUTUREWORK
Level polymorphism. There are multiple forms of level polymorphism that could be added to

DCOI. The simplest is prenex polymorphism which, in combination with global or let-bound

definitions, can reduce code duplication. By quantifying a definition over the levels it uses, it can

be instantiated at different levels as needed. We might however wish to also enforce constraints

among the levels quantified, so that we have guarantees about their relative relevancies. This can

be done by bounded quantification, which can only be instantiated by levels bounded above by

the one or more other levels given. Adding such forms of polymorphism likely would not violate

any of our metatheoretical properties, since each instantiation of a polymorphic definition with

particular levels could be inlined as an ordinary DCOI term with those levels substituted in.

Inductive types. While our prototype implementation contains data types with levels, adding

inductive types to DCOI with proper type indices, strict positivity checking, and eliminators,

and updating the Coq development to ensure none of the metatheoretical properties are broken,

remain future work. Aside from increasing expressivity, another goal of adding inductive types is

to subsume the existing unit, dependent pair, and propositional equality primitive types. Although

we won’t know what rules for inductive types are correct until the proofs are done, we can use the

implementation’s type checker and the rules for the existing types to guide the design of expressive

yet well-behaved inductive types. Lastly, inductive definitions should be prenex-polymorphic in all

levels mentioned to be as flexible as the primitives, which are not fixed in their levels.

Staged programming42. A potential application of DCOI is in staged programming [Sheard and

Nelson 1995], where different pieces of code are marked with different levels or stages, which can

be thought of as different stages of metaprogramming. Our reduction rules could be extended

by indexing with a stage and modified to proceed stage by stage, corresponding to expanding

metaprograms at each stage in order.

Although the dynamic behavior does not yet correspond to staged evaluation, we can use the

existing static types for staged programs. In particular, the box construct represents a way to

42 pi/Staged.pi
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manipulate code at different stages; for example, a value of type 𝑇 1 ((Nat1)→Nat) is a function
over naturals available at stage 1 but is manipulable as an opaque piece of object code at stage 0.

Consider the following implementation of exponentiation of naturals at stage 0 in terms of

multiplication at stage 1. In other words, exponentiation resembles a macro that expands to

applications of multiplication.

mul :1 Nat1 →Nat1 →Nat
exp : 0 Nat1 →Nat0 → 𝑇 1 Nat
exp b e = case e of
Zero ⇒ box1 1
Succ e′ ⇒ box1 (mul b (unbox1 (exp b e′)))

With proper staged evaluation, when we reach stage 1, expressions at stage 0 will have been

evaluated, and applications of exponentiation to a concrete exponent will have been expanded into

iterated multiplication. For instance, (unbox1 (exp b 3)) evaluates to (mul b (mul b (mul b 1)))
at stage 1.

Analogously to previous applications of dependency analysis, pieces of code from later stages

are indistinguishable from code from earlier stages. Intuitively, this means that metaprograms can’t

tell what programs are doing, since programs can’t run before the metaprograms expand.

Aside from separating programs into different stages of evaluation, levels could also separate

proofs into different type theories, as is done in two-level type theory [Annenkov et al. 2023],

which also has applications in staged compilation [Kovács 2022].

8 RELATEDWORK
8.1 Systems with Dependency Tracking
The Dependency Core Calculus (DCC) [Abadi et al. 1999] introduces the graded model type𝑇 ℓ A for

dependency tracking. Similar to the box type from DCOI, given a term a of type 𝑇 ℓ A, the content
stored inside a can only be used in a context that can observe ℓ . DCC enforces information flow by

restricting the type of the bind operator that inspects the content of a. For example, supposing a
has type 𝑇 ℓ0 B, the return type of the bind must then be protected at level ℓ0. Intuitively, a type is

protected at ℓ0 when every branch node of the type’s syntax tree is guarded by some𝑇 ℓ
constructor

where ℓ0 ≤ ℓ , excluding domain types.

Variations of DCC, such as DCC
pc

from Tse and Zdancewic [2004] and the sealing calculus from

Shikuma and Igarashi [2008], introduce a program counter or observer level to the typing judgment.

Accessing the data stored in a box of type 𝑇 ℓ0 A is done by comparing the observer level ℓ against

the level of the box ℓ0, similar to the admissible rule T-Unbox in DCOI.

The Dependent Dependency Calculus (DDC) [Choudhury et al. 2022] extends PTS [Barendregt

1993] with dependency tracking. Compared to previous systems, DDC’s design was influenced by

systemswith coeffects, and the variables in the typing context are labeledwith levels. The latticeL in

DDC is augmented with two elements {𝐶,𝑇 } such that ℓ ≤ 𝐶 ≤ 𝑇 for every ℓ ∈ L. The dependency

tracking mechanism for levels below 𝐶 is similar to previous systems, whereas the levels 𝐶 and 𝑇

are handled differently through the resurrection mechanism [Pfenning 2001] in order to support

compile-time irrelevance. The type conversion rule of DDC is based on indistinguishability, though

the observer level of the indistinguishability judgment must be fixed to 𝐶 , due to the limitation

discussed in Section 5.1. The design of DDC directly inspired the use of indistinguishability in

DCOI’s conversion rule. However, this work handles dependency tracking and compile-time

irrelevance through a uniform mechanism, generalizes the conversion rule to arbitrary observer

levels, and includes propositional equality.
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8.2 Compile-Time Irrelevance
The ability to convert between types based on indistinguishability can be viewed as a generalization

of a form of compile-time irrelevance. This feature plays an important role in reasoning about data

structures containing embedded proofs: the type checker should treat different witnesses of the

same proposition as equal and only compare relevant components.

In Coq and Agda, the respective sorts SProp and Prop [Gilbert et al. 2019] classify types whose

inhabitants are treated as definitionally equal. The system then ensures that terms whose types

are in this sort can never be pattern matched to produce terms of other sorts, preventing the flow

of information from irrelevant types to computationally relevant types. The Squash constructor

allows one to embed data types of the relevant sort into SProp and is analogous to the graded

modal type𝑇 ℓ A from DCOI. In Gilbert et al. [2019], it is impossible to construct the choice function

with the signature Squash (Squash A→ A). Instead, the choice function most be postulated as an

axiom. In DCOI, the choice function with the analogous type 𝑇 H (BH → B) can be defined as the

term boxH (𝜆x :HB. x).
Resurrection, introduced by Pfenning [2001], is used by DDC, EPTS [Mishra-Linger and Sheard

2008], and Agda [Abel and Scherer 2012]. Similar to DCOI and unlike Gilbert et al. [2019], proof

irrelevance in Pfenning [2001] is not determined by sorts. As in DCOI, the type system can label

variables as either relevant or irrelevant. However, a type system based on resurrection does not

require an observer level in its typing judgment. Instead, when checking irrelevant parts of the

term, the type system uses the resurrection operation on the typing context to make irrelevant

variables accessible.

To see how resurrection behaves differently from the dependency tracking mechanism of DCOI,

consider the terms 𝜆x :HB. boxH x and boxH (𝜆x :HB. x), the latter of which is the choice function

we have seen earlier. In DCOI, both terms type check at level L. However, with resurrection, only

the first term type checks. In the first term, by the abstraction rule, it suffices to show that boxH x
is well typed given the typing context x :HB. Before checking the subterm wrapped inside an H box,

the typing context is resurrected and the level of the variable x is lowered to 𝐿. As a result, the x
can legally appear inside the box. In the second term, the H box wraps around the entire lambda

expression. Before checking (𝜆x :HB. x), the empty context is resurrected. In this case, resurrection

has no effect on the variable x, which has yet to be introduced to the typing context, so its usage in

the body of the lambda is rejected.

Resurrection interacts poorly with strong dependent pairs because projections, unlike pattern

matching, do not introduce variables that can be resurrected later on. Consider a term xs of

type (m :H Nat) × Vector A m. We cannot check the second projection proj2 xs because its type,
Vector A ( proj1 xs) , contains the ill-typed term proj1 xs. If we interpret the level H as describing

irrelevance at runtime, rejecting proj1 xs in the term but accepting proj1 xs in the type is the

desired behavior. However, without an observer level on the typing judgment, there is no way

to distinguish between the illegal use of proj1 xs in the term and the legal use of proj1 xs as an
argument to Vector. Both must be rejected.

As pointed out by Choudhury et al. [2022], a direct consequence of the above limitation is that

the filter function from Section 5.3 must pattern match the returned existential from the recursive

call. Eisenberg et al. [2021] observe that filter defined using pattern matching is needlessly strict

and loses the streaming behavior of an ordinary list filter function in a call-by-name language.

To overcome the limitations of the resurrection mechanism, DDC restricts labels for run-time

irrelevance from being used as the observer in definitional equality. In Agda, there is a disjoint

mechanism for run-time irrelevance and function arguments are considered independently for
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run-time and compile-time irrelevance. DCOI provides a uniform mechanism that works the same

for reasoning about run-time erasure and compile-time equality.

8.3 Quantitative Type Systems
Unlike systems that track only what depends on what, quantitative type systems track usage more

precisely. In these systems, inputs are annotated with abstract usage information drawn from

an arbitrary semiring. This information specifies how many times a variable may be used in the

computation. These systems are related to dependency tracking because computation may not

depend on a variable marked with 0 usage.

The run-time irrelevance mechanism in Agda [Abel and Bernardy 2020] and Idris [Brady 2021]

is based on Quantitative Type Theory (QTT) [Atkey 2018; McBride 2016]. The typing judgment

in QTT takes the form Γ ⊢ 𝑀 :
𝜎 𝑆 where 𝜎 ∈ {0, 1}. The 𝜎 at the colon indicates the relevance

of the term being constructed, similar to the observer level in DCOI. When 𝜎 = 1, the term𝑀 is

computationally relevant. When 𝜎 = 0, the term𝑀 is irrelevant. A variable with 0 usage can only

be used when constructing irrelevant terms or in types.

While QTT judgments resemble those of DCOI, QTT only tracks usage at the term level: in

types, all tracking is effectively disabled. As a result, QTT’s definitional equality cannot rely on

usage information. Furthermore, as mentioned in Section 5.1, when instantiated with the boolean

semiring, QTT satisfies the upgrade property (Proposition 5.1) using the 1 ≤ 0 ordering. As a result,

QTT cannot replace 𝛽-equivalence with a usage-aware equality without breaking type soundness.

The more recent systems, GraD [Choudhury et al. 2021] and GRTT [Moon et al. 2021], track

usage in both terms and types. However, both systems require a fixed point of reference; the typing

judgment is not annotated by a level. (One can view the typing judgment as implicitly indexed by

usage 1, meaning that the term being constructed is always computationally relevant or “public”.)

In GraD, the typing judgment takes the form Δ; Γ ⊢ 𝑎 : 𝐴 where Γ is the typing context with

usage information and Δ is the same as Γ but without usage information. GraD’s regularity property

(shown below) is reminiscent of the regularity property (Lemma 3.2) of DCOI.

Lemma 8.1 (GraD: Regularity). If Δ; Γ ⊢ 𝑎 : 𝐴, then there exists some Γ′ such that Δ; Γ′ ⊢ 𝐴 : 𝑡𝑦𝑝𝑒 .

As in DCOI, there is independence between term-level and type-level usage information. However,

in GraD, the independence appears in the context (Γ′ vs. Γ), whereas in DCOI, the independence

appears in the observer level of the judgment.

GRTT takes a more fine-grained approach to tracking type-level resource usage. Each variable

in GRTT is associated with two usage levels, one for term-level usage and one for type-level usage.

A variable may be restricted to the 0 usage at the term level, but still have a nonzero usage in the

type, and vice versa. In DCOI, we allow a function’s argument to be used relevantly in its type but

irrelevantly in its body. However, there is no way to enforce the invariant that a function’s argument

is never used in its type since well-formedness checks in DCOI can be done at an arbitrarily chosen

level. Despite GRTT’s fine-grained usage tracking, its conversion rule is 𝛽-equivalence.

9 CONCLUSION
In this work, we present DCOI, an extension of Pure Type Systems with dependency tracking that

uses indistinguishability for type conversion and internalizes indistinguishability as an indexed

equality type. These new features allow reasoning about information flow within the type system,

extending the expressiveness of the language. Our design also handles run-time and compile-time

irrelevance in a uniform way, using the same mechanism for generating more efficient code and

reducing the type-checking effort for programs that rely heavily on type-level computations.
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