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Algorithmic Conversion with Surjective Pairing: A Syntactic
and Untyped Approach
YIYUN LIU, University of Pennsylvania, USA

STEPHANIE WEIRICH, University of Pennsylvania, USA

In a dependent type theory with 𝛽-equivalence as its equational theory, the confluence of untyped reduction

and normalization immediately give us a proof of the decidability of type conversion, where the decision

procedure for convertibility simply checks the equality of the 𝛽-normal forms of its inputs. This technique

is not available in the presence of surjective pairing (i.e. the 𝜂-law for pairs) because 𝛽𝜂-reduction is not

confluent. In this work, we show that by adopting established syntactic techniques, we can resolve the issue

with confluence caused by surjective pairing, and recover a confluence-based proof of decidability of type

conversion. Compared to existing proof developments, which rely on semantic tools such as Kripke-style

logical relations, our proof modularly composes a minimal semantic proof of untyped normalization and a

syntactic proof of decidability. This modularity enables us to explore algorithmic conversion through syntactic

methods without modifying the minimal semantic proof. We have fully mechanized our results using the Rocq

theorem prover.

1 Introduction
A prerequisite to implementing a type checker for a dependent type theory is a decision procedure

for type conversion. However, finding such an algorithm is nontrivial; the type theories’ specification

of definitional equality often does not directly induce an algorithm, due to the rules such as

symmetry and transitivity. Furthermore, not only do we want an algorithm, but we also want

to know that it is correct, i.e. we want to prove that it is sound and complete with respect to

definitional equality. By mechanizing such a correctness proof in a proof assistant, we can extract a

certified conversion routine and have the highest level of assurance in our implementation.

Designers and implementors of existing type theories take various approaches to this problem.

When definitional equality is defined as untyped 𝛽-equivalence, the confluence of untyped 𝛽-

reduction gives us a reliable formula for both finding algorithms and reasoning about them. To

test the 𝛽-equivalence of two terms, confluence says it suffices to find a common term that both

inputs normalize to through any reduction strategy. As a result, we obtain a class of algorithms

that reduce their inputs to 𝛽-normal forms and then compare for 𝛼-equivalence. The completeness

and soundness of these algorithms follows directly from confluence. To prove that these algorithms

terminate, and thus that conversion is decidable, we can use a logical predicate [Girard et al. 1989]

to show that all well-typed terms are normalizing under any reduction strategy.

We can also use the confluence-based method for type theories that use typed 𝛽-equivalence

for conversion. Adams [2006] and Siles and Herbelin [2012] show the equivalence between pure

type systems [Barendregt 1991] that use untyped and typed 𝛽-equality. Thus, we can transport

decidability results for a system with untyped definitional equality to its equivalent system with

typed definitional equality.

However, challenges arise when definitional equality includes of 𝜂-laws, especially the pair

𝜂-law, also known as surjective pairing. While confluence holds for Curry-style systems that

include the function 𝜂-law, surjective pairing breaks confluence for both Curry and Church-style

systems [Barendregt 1993; Geuvers 1993; Klop and de Vrijer 1989; Lennon-Bertrand 2022]. Without

confluence, we are unable to justify the correctness of the reduce-and-compare algorithm.
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2 Yiyun Liu and Stephanie Weirich

Furthermore, 𝜂-reduction for pairs is not type preserving [Abel and Coquand 2007], making it

difficult to show the equivalence between systems with typed 𝛽𝜂-equality and untyped 𝛽𝜂-equality.

Because typed definitional equality only relates well-typed terms, it is more restrictive than untyped

equality. In particular, in the transitivity rule, to derive𝐴 =𝐶 from𝐴 = 𝐵 and 𝐵 =𝐶 , typed equality

also requires that the intermediate type 𝐵 be well-typed. However, without type preservation, it is

not obvious how the untyped algorithm that compares 𝛽𝜂-normal forms is sound with respect to a

typed definitional equality, as the 𝛽𝜂-reduction sequence to the normal form may contain ill-typed

terms.

These technical issues are unfortunate because the pair 𝜂-law is important for the expressiveness

of the type system! In theorem provers, the 𝜂-law for pairs generalizes to the 𝜂-laws for non-empty

dependent records, allowing us to type-check more terms.

In this work, we resolve these issues and show that reduce-and-compare algorithms with 𝜂-

laws for functions and pairs correctly implement type conversion. Our key observation is that

𝛽𝜂-reduction with the function 𝜂-law and surjective pairing is confluent on an inductively defined

set of strongly normalizing terms (originally defined by Van Raamsdonk and Severi [1995] and

denoted as SN). By applying the 𝑆𝑁 -method of Joachimski and Matthes [2003] to formulate our

logical predicate, we can prove that all well-typed terms are in the SN set, allowing us to directly

show the completeness of reduce-and-compare algorithms.

To show the soundness of any reduce-and-compare algorithm, we adopt the syntactic technique

of Goguen [2005] and introduce Coquand’s untyped conversion algorithm [Coquand 1991] as an

intermediate step. Coquand’s algorithm performs 𝜂-expansion based on the shape of the terms

being compared. The shape-based 𝜂-expansion is type-preserving and therefore enables us to give a

direct proof of its soundness with respect to the typed convertibility. By proving the completeness

of Coquand’s algorithm with respect to the untyped reduce-and-compare algorithm, we fully

establish the equivalence between the typed convertibility, Coquand’s algorithm, and the untyped

reduce-and-compare algorithm.

Why yet another decidability proof of type conversion? To motivate our confluence-based algo-

rithms, we start by reviewing the state-of-the-art proof techniques for the decidability of conversion.

Abel and Coquand [2007] and later efforts by Abel et al. [2017]; Abel and Scherer [2012] andAdjedj

et al. [2024], prove the decidability of type conversion by interpreting types as partial equivalence

relations (PER). Instead of modeling the definitional equality with untyped 𝛽𝜂-reduction, this

approach models definitional equality using PERs. The extensionality properties of the PER model,

justifies the 𝜂-laws for functions and products. This approach sidesteps the need for the confluence,

so works in situations where untyped 𝛽𝜂-reduction cannot model definitional equality (e.g. the
inclusion of 𝜂-laws for singleton types). However, the power of the PER model comes at a cost.

Regardless of whether the algorithm being justified is typed [Abel and Scherer 2012; Harper and

Pfenning 2005] or untyped [Abel and Coquand 2007], the PER method can only be carried out

on type systems with a typed definitional equality. For systems that do not have an equivalent

form with a typed definitional equality, such as ICC [Barras and Bernardo 2008; Miquel 2001],

DDC [Choudhury et al. 2022], and DCOI [Liu et al. 2024b], this approach is not applicable.

Coquand [2019], Altenkirch and Kaposi [2016], and the more recent synthetic method by Sterling

and Angiuli [2021] prove the decidability of type conversion by working with an algebraic structure

where syntactic terms are quotiented by definitional equality. The algebraic approach completely

eschews the notion of reduction and proves the correctness of the normalization by evaluation

(NbE) algorithm [Berger et al. 1998] without reasoning about reduction at all. Similar to the PER

approach, the algebraic reduction-free approach does not rely on the confluence of 𝛽𝜂-reduction,

but shares the limitation that the object language must have a typed definitional equality. While



99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Algorithmic Conversion with Surjective Pairing: A Syntactic and Untyped Approach 3

the reduction-free approach leads to a simple proof on paper, it remains difficult to carry it out in

existing intensional theorem provers [Adjedj et al. 2024].

Despite the many advantages of the PER method and the algebraic reduction-free method, we

believe the confluence-based proof is appealing for the following reasons. First, we can directly

apply the confluence-based method to a system with an untyped definitional equality without

taking a detour to typed definitional equality. Avoiding such detours not only leads to simpler

proofs, but is also necessary for systems that are not known to be compatible with typed equality.

Second, because the confluence result is untyped, we can reuse it across multiple different type

systems. The presence of expressive type system features such as large eliminations, subtyping, or

inductive datatypes is independent of our methodology.

Finally, the confluence-based method leads to a modular proof consisting of a minimal, localized

semantic proof of normalization, and a purely syntactic proof of decidability parameterized by

confluence and normalization. The clean decoupling between the semantic and syntactic arguments

allows us to mechanize more of the decidability proof in a weak metatheory by assuming only

normalization [Sozeau et al. 2019].

We havemechanized all of the results of this paper using the Rocq proof assistant [Team 2024] and

the proof development is available in the supplementary material under the source subdirectory.
By leveraging the method of encoding general recursion by Bove and Capretta [2005], we can

extract the verified conversion checker as an executable OCaml program.

The structure of our proof scripts supports our claim about its modularity and reusability. The

entire development has approximately 10,000 LoC. The logical predicate, which is used to prove

normalization, consists of 1,500 LoC (15% of the total). In contrast, the logical relations found

in both Abel et al. [2017] and Wieczorek and Biernacki [2018] take up more than 50% of their

respective code bases. Our semantic proofs are therefore significantly more lightweight. Our proof

for 𝛽𝜂-confluence and various other untyped injectivity properties, all of which are agnostic to

the type system, consists of 5,000 LoC (50%). The remaining proofs are syntactic metatheoretic

results of the type theory and syntactic proofs that relate Coquand’s algorithm to 𝛽𝜂-reduction.

Experimenting with new variations of the conversion algorithm would thus only require changes

to the remaining 3,500 lines of syntactic proof that are specific to the algorithm.

Our contributions. In this work, we analyze an expressive dependent type theory, called 𝜆Π,Σ,𝑈𝑖 ,N
,

that features large eliminations, a cumulative universe hierarchy with subtyping, and a typed

convertibility relation with 𝜂-laws for functions and dependent pairs. Section 2 presents the syntax

and typing specification of our object language and its basic syntactic results.

In Section 3, we prove the confluence of 𝛽𝜂-reduction for SN and apply the 𝑆𝑁 -method in a

dependently typed setting to prove that every well-typed term is in SN using an untyped logical

predicate. The confluence result over SN allows us to model convertibility with untyped 𝛽𝜂-

reduction and conclude the completeness of the reduce-and-compare algorithm with respect to the

definitional subtyping relation.

In Section 4, we introduce Coquand’s algorithm for type conversion extended with subtyping

and surjective pairing as bridge between the untyped reduce-and-compare algorithm and typed

definitional subtyping. Leveraging the fact that the 𝜂-expansion performed in Coquand’s algorithm

is type-preserving, we prove the soundness of Coquand’s algorithm with respect to the typed

definitional subtyping. We prove the completeness of Coquand’s algorithm with respect to untyped

𝛽𝜂-equivalence using a termination metric adapted from Goguen [2005]. We are thus able to

conclude our decidability proof by showing that Coquand’s algorithm and the reduce-and-compare

algorithm (with well-typed inputs) are both equivalent to the typed convertibility relation.
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4 Yiyun Liu and Stephanie Weirich

While our object language, 𝜆Π,Σ,𝑈𝑖 ,N
, mostly resembles the core languages of intensional type

theories, there are a few subtleties in its design, which we discuss in Section 5. In particular, we

include type constructor injectivity rules as part of the subtyping relation (Section 5.1), and use

of Curry-style lambda terms (Section 5.2). We also deepen our comparison to related systems in

Section 6 and conclude in Section 7.

2 Specification of 𝜆Π,Σ,𝑈𝑖 ,N

Γ F · | Γ, x :A Typing contexts

A, B,C, a, b, c, P F Terms

| x | Ui variables, type universes
| Πx :A. B | 𝜆x . b | b a function types, abstractions, applications
| Σx :A. B | (a, b) | 𝜋1 x | 𝜋2 x pair types, pairs, projections

Fig. 1. Grammar, excluding natural numbers

⊢ Γ (Context well-formedness)

Wf-Nil

⊢ ·

Wf-Cons

⊢ Γ Γ ⊢ A : Ui

⊢ Γ, x :A

Γ ⊢ a : A (Typing)

Wt-Var

⊢ Γ x :A ∈ Γ

Γ ⊢ x : A

Wt-Pi

Γ ⊢ A : Ui
Γ, x :A ⊢ B : Uj

Γ ⊢ Πx :A. B : Ui∨j

Wt-Abs

Γ, x :A ⊢ b : B

Γ ⊢ 𝜆x . b : Πx :A. B

Wt-App

Γ ⊢ b : Πx :A. B
Γ ⊢ a : A

Γ ⊢ b a : B[a/x]

Wt-Univ

⊢ Γ

Γ ⊢ Ui : Ui+1

Wt-Sig

Γ ⊢ A : Ui
Γ, x :A ⊢ B : Uj

Γ ⊢ Σx :A. B : Ui∨j

Wt-Pair

Γ ⊢ a : A Γ ⊢ b : B[a/x]
Γ ⊢ Σx :A. B : Ui

Γ ⊢ (a, b) : Σx :A. B

Wt-Proj1

Γ ⊢ a : Σx :A. B

Γ ⊢ 𝜋1 a : A

Wt-Proj2

Γ ⊢ a : Σx :A. B

Γ ⊢ 𝜋2 a : B[𝜋1 a/x]

Wt-Conv

Γ ⊢ a : A Γ ⊢ A ≤ B

Γ ⊢ a : B

Fig. 2. Typing rules

We start by presenting 𝜆Π,Σ,𝑈𝑖 ,N
, our dependently typed object language, including its grammar

and typing rules (Figures 1 to 3). These rules specify what programs type check, but they do not

directly describe a type checking algorithm.

The language includes functions (𝜆x . a), dependent pairs (a, b) with projection operators (𝜋1 a
and 𝜋2 a), and a Russell-style infinite universe hierarchy (Ui). Function abstractions do not include

type annotations; we discuss in Section 5.2 our proofs can be easily adapted to a Church-style

system.

The language in ourmechanized proofs also includes natural numbers with an induction principle,

but we omit these forms from the text. We include natural numbers in our development to provide

an observable infinite data type so our language supports large eliminations. Furthermore, natural
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Algorithmic Conversion with Surjective Pairing: A Syntactic and Untyped Approach 5

Γ ⊢ a = b : A (Equality)

E-Refl

Γ ⊢ a : A

Γ ⊢ a = a : A

E-Sym

Γ ⊢ b = a : A

Γ ⊢ a = b : A

E-Trans

Γ ⊢ a = b : A
Γ ⊢ b = c : A

Γ ⊢ a = c : A

E-AbsExt

x ∉ Γ
Γ, x :A ⊢ a x = b x : B

Γ ⊢ a = b : Πx :A. B

E-PairExt

Γ ⊢ 𝜋1 a = 𝜋1 b : A
Γ ⊢ 𝜋2 a = 𝜋2 b : B[𝜋1 a/x]

Γ ⊢ a = b : Σx :A. B

E-AppAbs

Γ ⊢ b : A Γ, x :A ⊢ a : B

Γ ⊢ (𝜆x . a) b = a[b/x] : B[b/x]

E-ProjPair1

Γ ⊢ a : A Γ ⊢ b : B[a/x]
Γ ⊢ 𝜋1 (a, b) = a : A

E-ProjPair2

Γ ⊢ a : A Γ ⊢ b : B[a/x]
Γ ⊢ 𝜋2 (a, b) = b : B[a/x]

Γ ⊢ A ≤ B (Subtyping)

L-Trans

Γ ⊢ A ≤ B Γ ⊢ B ≤ C

Γ ⊢ A ≤ C

L-Eq

Γ ⊢ A = B : Ui

Γ ⊢ A ≤ B

L-Univ

⊢ Γ i ≤ j

Γ ⊢ Ui ≤ Uj

L-Pi

Γ ⊢ A1 ≤ A0

Γ, x :A0 ⊢ B0 ≤ B1
Γ ⊢ Πx :A0. B0 ≤ Πx :A1. B1

L-Sig

Γ ⊢ A0 ≤ A1

Γ, x :A0 ⊢ B0 ≤ B1
Γ ⊢ Σx :A0. B0 ≤ Σx :A1. B1

L-PiProj1

Γ ⊢ Πx :A0 . B0 ≤ Πx :A1. B1
Γ ⊢ A1 ≤ A0

L-PiProj2

Γ ⊢ Πx :A0. B0 ≤ Πx :A1. B1
Γ ⊢ a0 = a1 : A1

Γ ⊢ B0 [a0/x] ≤ B1 [a1/x]

Fig. 3. Equality and subtyping rules (selected)

numbers help us ensure that our proof techniques are robust under the addition of positive types

(i.e. types with pattern-matching as their elimination forms). This addition leads to no surprises and

requires no special treatment during our development. The full set of rules that includes natural

numbers can be found in the supplementary material.

The 𝜆Π,Σ,𝑈𝑖 ,N
type system includes subtyping. Rule Wt-Conv refers to the definitional subtyping

relation Γ ⊢ A ≤ B, which is defined in Figure 3 along with the 𝛽𝜂-rules for the definitional equality

Γ ⊢ a = b : A. The rules for equality are standard, except for the addition of the injectivity rules

L-PiProjOne and L-PiProjTwo and the omitted counterpart for Σ types. These rules simplify our

proofs and do not affect decidability; we discuss them further in Section 5.1.

This type system satisfies standard syntactic properties, such as weakening and substitution

(not shown). In addition, our mechanization includes proofs of the following. We can recover the

well-formedness of context from the mutually defined typing and conversion judgments.

Lemma 2.1 (Context regularity). If Γ ⊢ a : A, Γ ⊢ a = b : A, or Γ ⊢ A ≤ B, then ⊢ Γ.

In the presence of rule Wt-Conv, the generation lemma is useful for recovering information

about a typing derivation.

Lemma 2.2 (Generation (selected)).

• If Γ ⊢ 𝜆x . a : C, then there exists some A and B such that Γ ⊢ Πx :A. B ≤ C and Γ, x :A ⊢ a : B.
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6 Yiyun Liu and Stephanie Weirich

• If Γ ⊢ b a : C, then there exists some A and B such that Γ ⊢ b : Πx : A. B, Γ ⊢ a : A and
Γ ⊢ B[a/x] ≤ C.

• If Γ ⊢ Πx : A. B : C, then there exists some i such that Γ ⊢ A : Ui, Γ, x : A ⊢ B : Ui, and
Γ ⊢ Πx :A. B : Ui and Γ ⊢ Ui ≤ C.

• If Γ ⊢ Ui : C, then Γ ⊢ Ui : Ui+1 and Γ ⊢ Ui+1 ≤ C.

Using the substitution lemma and rules L-PiProjOne and L-PiProjTwo, we can prove that

𝛽-reduction preserves typing. We defer the precise definition of 𝛽-reduction to the next section.

Lemma 2.3 (Subject Reduction). If Γ ⊢ a : A and a {𝛽 b, then Γ ⊢ b : B.

Finally, regularity states that if a term is well-typed, then its type must be well-formed.

Lemma 2.4 (Regularity).

• If Γ ⊢ a : A, then there exists i such that Γ ⊢ A : Ui.
• If Γ ⊢ a = b : A, then Γ ⊢ a : A and Γ ⊢ b : A.
• If Γ ⊢ A ≤ B, then there exists i such that Γ ⊢ A : Ui and Γ ⊢ B : Ui.

3 Confluence of 𝛽𝜂-Reduction for Strong Normalizing Terms
Our goal in this section is to show that we can implement the subtyping relation Γ ⊢ A ≤ B.
A key step in this process is to model the typed convertibility relation Γ ⊢ a = b : A with an

untyped reduce-and-compare algorithm defined in terms of 𝛽𝜂-reduction. This algorithm, which

we introduce in Section 3.6, is not transitive by definition, a necessary property if we are to use it to

model the transitivity rule of typed convertibility. Instead, we use the confluence of 𝛽𝜂-reduction

to show that our algorithmic relation is transitive.

However, the usual 𝛽𝜂-reduction relation is not confluent, due to surjective pairing. (See Klop

[1980] for a counterexample). We solve this issue by identifying a set of terms where conflu-

ence holds—an inductively characterized set, called SN, that contains only strongly normalizing

terms [Van Raamsdonk and Severi 1995]—and then arguing that all terms that we care about are in

this set. Following Joachimski and Matthes [2003], we use an untyped logical predicate to show that

all well-typed terms are in SN. Because we only invoke the conversion algorithm on well-typed

terms, the confluence result for SN is sufficient to justify the transitivity of the reduce-and-compare

algorithm.

3.1 Reduction Relations and Normal Forms

a ▷𝛽 b (Primitive 𝛽-Reduction)

PB-AppAbs

(𝜆x . a) b ▷𝛽 a[b/x]

PB-ProjPair1

𝜋1 (a, b) ▷𝛽 a

PB-ProjPair2

𝜋2 (a, b) ▷𝛽 b

a ▷𝜂 b (Primitive 𝜂-Reduction)

PE-AppEta

x ∉ freevar(𝑎)
𝜆x . a x ▷𝜂 a

PE-PairEta

(𝜋1 a, 𝜋2 a) ▷𝜂 a

Fig. 4. Primitive 𝛽 and 𝜂-Reductions

Before we introduce SN, we start by reviewing standard definitions that help us both motivate

and state properties about this set.
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Algorithmic Conversion with Surjective Pairing: A Syntactic and Untyped Approach 7

First, in Figure 4, we define primitive 𝛽 and 𝜂-reductions. Rule PE-PairEta is also known as

surjective pairing. We refer to a lambda term that can be reduced by one of these primitive reduction

rules as a 𝛽 or 𝜂-redex respectively.

We use{ to denote the strong/full reduction relation, which can reduce anywhere in the term,

including under constructor forms, and⇒ to denote its parallel variant [Barendregt 1993; Takahashi

1995]. To be specific about which primitive rules may participate in full reduction, we use subscripts.

Thus, the relations {𝛽 , {𝜂 , and {𝛽𝜂 denote the full 𝛽 , 𝜂, and 𝛽𝜂-reduction relations. We also

use{𝑙𝑜 to denote the leftmost-outermost 𝛽-reduction strategy and{ℎ as its corresponding weak

reduction variant, which does not reduce under constructors. Note that our proofs do not require

versions of these relations that include 𝜂-reduction, so we omit the 𝛽-subscript.

Neutral forms (ne) v F x | v u | 𝜋1 v | 𝜋2 v
Normal forms (nf) u F Πx :u. u | Σx :u. u | 𝜆x . u | (u, u) | Ui

Weak-head neutral forms (whne) e F x | e a | 𝜋1 e | 𝜋2 e
Canonical forms (canf) h F Πx :A. B | Σx :A. B | 𝜆x . a | (a, b) | Ui
Weak-head normal forms (whnf) f F e | h

Fig. 5. Grammars for neutral and normal forms

Figure 5 defines 𝛽-neutral (v) and 𝛽-normal (u) forms and their weak-head counterparts. An ex-

pression that is in weak-head normal form but is not neutral is called canonical. It is straightforward
to verify that neither neutral nor normal forms contain any 𝛽-redexes and that the 𝜂-reduction

relation preserves 𝛽-normal forms.

Lemma 3.1. If a ∈ nf or a ∈ ne, then 𝑎 ̸{𝛽 𝑏.

Lemma 3.2. If u {𝜂 a, then a ∈ nf . If v {𝜂 a, then a ∈ ne.

Note that the converse of Lemma 3.1 is not true—the inductive definitions of neutral and normal

forms rule out stuck terms. For examples, the terms 𝜋1 (𝜆x . x) or (x, y) z are unable to take any

further 𝛽-steps but are not in normal form as defined by Figure 5.

3.2 An Inductive Characterization of Strongly Normalizing Terms
Following Van Raamsdonk and Severi [1995], we define the set SN of strongly normalizing terms

mutually with the set of strongly neutral terms SNe and the relation a {SN b, a subrelation of the

weak-head reduction relation a {ℎ b. Ignoring N-Exp, the sets SN and SNe are exactly the sets of

normal and neutral forms from Figure 5. By adding N-Exp, we can expand the sets to include terms

that contain 𝛽-redexes but nevertheless reduce to a normal or neutral forms.

In rule N-AppAbs, the fact that a[b/x] is strongly normalizing alone does not necessarily imply

that (𝜆x . a) b is also strongly normalizing. We can construct a counterexample by picking b to be an
infinite loop and a an expression that does not contain the variable x. Thus, the b ∈ SN constraint

in N-AppAbs ensures that if the term b is strongly normalizing and a {SN b, then a must also be

strongly normalizing.

By forgetting the SN and SNe premises in{SN, we can recover from each of these judgments a

leftmost-outermost reduction ({𝑙𝑜 ) sequence to normal or neutral forms.

Lemma 3.3 (SN leftmost-outermost reduction).

• If a ∈ SN, then there exists u such that a {∗
𝑙𝑜
u.

• If a ∈ SNe, then there exists v such that a {∗
𝑙𝑜
v.

• If a {SN b, then a {ℎ b.
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a ∈ SN (Strong Normal Forms)
N-Abs

b ∈ SN

𝜆x . b ∈ SN

N-Pair

a ∈ SN b ∈ SN

(a, b) ∈ SN

N-Pi

A ∈ SN B ∈ SN

Πx :A. B ∈ SN

N-Sig

A ∈ SN B ∈ SN

Σx :A. B ∈ SN

N-Univ

Ui ∈ SN

N-SNe

a ∈ SNe

a ∈ SN

N-Exp

a {SN b b ∈ SN

a ∈ SN

a ∈ SNe (Strong Neutral Forms)

N-Var

x ∈ SNe

N-App

a ∈ SNe b ∈ SN

a b ∈ SNe

N-Proj1

a ∈ SNe

𝜋1 a ∈ SNe

N-Proj2

b ∈ SNe

𝜋2 a ∈ SNe

a {SN b (Strong Weak Head Reduction)

N-AppAbs

b ∈ SN

(𝜆x . a) b {SN a[b/x]

N-AppCong

b ∈ SN a0 {SN a1
a0 b {SN a1 b

N-ProjPair1

b ∈ SN

𝜋1 (a, b) {SN a

N-ProjPair2

a ∈ SN

𝜋2 (a, b) {SN b

N-ProjCong1

a {SN b

𝜋1 a {SN 𝜋1 b

N-ProjCong2

a {SN b

𝜋2 a {SN 𝜋2 b

In the following, we prove that 𝛽𝜂-reduction is confluent by using 𝜂-postponement [Barendregt

1993; Takahashi 1995]. A sequence of 𝛽𝜂-reductions starting from an SN term can be factorized

into a sequence of 𝛽-reductions followed by 𝜂-reductions.

An alternative proof of confluence is to use Newman’s lemma with the fact that 𝛽𝜂-reduction is

locally confluent. A perhaps surprising result, shown by Joachimski and Matthes [2003], is that

despite the absence of 𝜂-rules in the definition of {SN, the set SN also characterizes the set of

strongly 𝛽𝜂-normalizing terms. However, the proof that terms in SN are strongly 𝛽𝜂-normalizing,

as required by Newman’s lemma, is tedious. It requires nested induction and repeated analysis

of possible 𝛽𝜂-redexes to show that the set of strongly 𝛽𝜂-normalizing terms satisfies the same

congruence rules as SN and SNe.
Our proof based on 𝜂-postponement avoids the headache of connecting SN to strong 𝛽𝜂-

normalization (defined in terms of the well-foundedness of{𝛽𝜂 ). Furthermore, this proof is also

more flexible as it allows us to generalize the 𝛽𝜂-confluence result to weakly 𝛽-normalizing systems

as we show in Section 5.3.

3.3 Properties of SN
Next, we show structural properties of SN to prepare for our 𝜂-postponement and confluence

proof. Like the inductively defined normal and neutral forms (Figure 5), the sets SN and SNe do not
contain stuck terms.

Lemma 3.4 (No Stuck Terms). There is no terms a, b, and c such that (a, b) c ∈ SN, 𝜋1 (𝜆x . a) ∈ SN,
or 𝜋2 (𝜆x . a) ∈ SN.

Proof. Immediate by case analysis over the derivation of SN. □
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The inductive characterization of strong normalization satisfies the structural properties of

renaming and inversion (not shown), as well as the antisubstitution property below.

Lemma 3.5 (SN antisubstitution).

• If a[b/x] ∈ SN, then a ∈ SN.
• If a[b/x] ∈ SNe, then a ∈ SNe.
• If a[c/x] {SN b, then either a ∈ SNe or there exists b0 such that a {SN b0 and b = b0 [c/x].

The structural properties are proven by structural induction over the respective derivation except

for the application case of inversion that requires Lemma 3.5.

Strong normalization is preserved by both 𝛽-reduction and 𝜂-reduction. However, because SN
and SNe are mutually defined with the reduction relation a {SN b, we must simultaneously show

that 𝛽𝜂-reduction commutes with a {SN b. This proof of commutativity requires us to generalize

the lemma statement to use parallel 𝛽𝜂-reduction. Furthermore, we use a {SN b to denote the

reflexive closure of a {SN b.

Lemma 3.6 (SN Preservation).

• If a ∈ SN and a ⇒𝛽𝜂 b, then b ∈ SN.
• If a ∈ SNe and a ⇒𝛽𝜂 b, then b ∈ SNe.
• If a {SN b0 and a ⇒𝛽𝜂 b1, then there exists some c such that b0 ⇒𝛽𝜂 c and b1 {SN c.

The proof for commutativity (the third case of Lemma 3.6) only works because a {SN b is a

subrelation of head reduction, which never reduces under constructors. The same commutativity

property does not hold if we replace a {SN b with full 𝛽𝜂-reduction.

3.4 Postponement of 𝜂-Reduction for SN
While 𝜂-postponement is a classic result for the pure untyped lambda calculus, it does not hold

when we add another constructor (such as pairing). A simple counterexample is the expression

𝜋1 (𝜆x . (y, y) x), which normalizes to 𝑦 by first 𝜂-contracting the lambda term 𝜆x . (y, y) x to (y, y)
then 𝛽-reducing 𝜋1 (y, y). More generally, the counterexamples involve a stuck term that becomes

unstuck by one step of 𝜂-reduction. However, because SN contains no stuck terms, we can prove

𝜂-postponement for terms in SN without running into the problematic cases!

The 𝜂-postponement theorem that we prove is more precise than the corresponding theorem

found in Barendregt [1993] and Takahashi [1995]. We show that every sequence of 𝛽𝜂-reductions

can be converted into a sequence of 𝛽-reductions followed by a sequence of 𝜂-reductions such

that the 𝜂-reduction sequence does not reduce any 𝛽-redexes. We denote this restrictive version of

𝜂-reduction as a ⇒𝑛𝑒 b, mutually defined with the helper reduction relation a ⇒𝑒 b in Figure 6.

Both relations are subrelations of parallel 𝜂-reduction.

These definitions track whether we are reducing the scrutinee of an elimination form. The

relation a ⇒𝑛𝑒 b can be used when the term a is not used in this way. Thus, we can freely perform

𝜂-contractions through AppEta and PairEta without erasing any 𝛽-redex. The a ⇒𝑒 b relation,
on the other hand, is used for subterms that are being eliminated and therefore is not allowed to

perform any 𝜂-reduction steps at the top-level since doing so would erase potential 𝛽-redexes.

The desired property that a ⇒𝑛𝑒 b does not reduce a 𝛽-redex can be stated as follows.

Lemma 3.7 (restrictive-𝜂 and nf). If a ⇒𝑛𝑒 b or a ⇒𝑒 b, then b ∈ nf implies a ∈ nf .

Proof. Immediate by mutual induction over the derivations of a ⇒𝑛𝑒 b and a ⇒𝑒 b. □

The following lemma allows us to decompose one step of parallel 𝜂-contraction into a sequence

of 𝛽-reductions followed by one step of restrictive 𝜂-contraction. This property requires the SN
restriction.
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a ⇒𝑛𝑒 b (Restrictive 𝜂-reduction (not eliminated))
EP-AppEta

a0 ∉ canf a0 ⇒𝑒 a1
x ∉ freevar(𝑎)

(𝜆x . a0 x) ⇒𝑛𝑒 a1

EP-PairEta

a0 ∉ canf a0 ⇒𝑒 a1
(𝜋1 a0, 𝜋2 a0) ⇒𝑛𝑒 a1

EP-Embed

a ⇒𝑒 b

a ⇒𝑛𝑒 b

a ⇒𝑒 b (eliminated)
NEP-AbsCong

a0 ⇒𝑛𝑒 a1
𝜆x . a0 ⇒𝑒 𝜆x . a1

NEP-AppCong

a0 ⇒𝑒 a1 b0 ⇒𝑛𝑒 b1
a0 b0 ⇒𝑒 a1 b1

NEP-PairCong

a0 ⇒𝑛𝑒 a1 b0 ⇒𝑛𝑒 b1
(a0, b0) ⇒𝑒 (a1, b1)

Fig. 6. Definitions of restrictive 𝜂-reductions (selected)

Lemma 3.8 (𝜂-Decomposition). If a ⇒𝜂 b and a ∈ SN, then there exists c such that a {∗
𝛽
c and

c ⇒𝑛𝑒 b.

Proof. By inducting over the derivation of a ⇒𝜂 b. Assuming a ∈ SN, Lemma 3.6 and inversion

ensure that every subterm of a or reduced term also belongs to SN. The only interesting cases are

EP-AppEta and EP-PairEta, which are similar.

We show the EP-AppEta case to demonstrate how the lemmas defined earlier are used. Suppose

a = 𝜆x . a0 x where x ∉ freevar(𝑎) and a0 ⇒𝜂 b. By induction, there exists some c0 such that

a0 {∗
𝛽
c0 and c0 ⇒𝑛𝑒 b. Our goal is to find some c such that 𝜆x . a0 x {∗

𝛽
c and c ⇒𝑛𝑒 b.

From a0 {∗
𝛽
c0, we deduce that 𝜆x . a0 x {∗

𝛽
𝜆x . c0 x. When c0 is not in canonical form, then

a0 ∉ canf holds, and we are allowed to use EP-AppEta to finish off the proof by picking c = 𝜆x . c0 x.
The precondition of Ep-AppEta requires c0 ⇒𝑒 b rather than c0 ⇒𝑛𝑒 b, but we know that a0 ∉ canf .
When c0 is a canonical form, we know that it must take the form 𝜆x . c1 for some term c1, since

otherwise Lemmas 3.4 and 3.6 derive a contradiction. We can then pick c = 𝜆x . c1 and construct the
reduction sequence a = 𝜆x . a0 x {∗

𝛽
𝜆x . (𝜆x . c1) x {𝛽 𝜆x . c1 = c0 ⇒𝑛𝑒 b. □

The parallel 𝜂-rules for functions and pairs are hard to analyze as they may reduce any finite

number of outermost 𝜂-redexes. Lemma 3.8 addresses this problem by decomposing a single step

of parallel 𝜂-reduction into a sequence of 𝛽-reduction followed by one step of⇒𝑛𝑒 , which can only

reduce at most one outermost 𝜂-redex. Thus, Lemma 3.8 subsumes the notion of 𝑘-fold 𝜂-expansion

from Takahashi [1995] as a tool to make inverting on the derivation of parallel 𝜂-reduction tractable.

Lemma 3.9 (𝜂-postponement). If a ∈ SN, a ⇒𝜂 b, and b {𝛽 c, then there exists some b0 such
that a {∗

𝛽
b0 and b0 ⇒𝜂 c.

Proof. By induction on the derivation of a ⇒𝜂 b. Most cases are trivial except for the congruence

rules for elimination forms, where Lemma 3.8 is required. We only consider the case for rule P-

AppCong as the other cases are similar. Suppose a = a0 a1 and b = b0 b1 such that a0 ⇒𝜂 b0 and
a1 ⇒𝜂 b1. We invert on the derivation of b = b0 b1 {𝛽 c and consider two possible cases. In the

first case, b0 b1 steps into c through one of the congruence rules for application. The goal is then

immediate by induction.

In the second case, we have b0 b1 = (𝜆x . b2) b1 {𝛽 b2 [b1/x] = c for some term b2. Applying
Lemma 3.8 to the hypothesis that a0 ⇒𝜂 b0 = 𝜆x . b2, we deduce that there exists some term a2 such
that a0 {∗

𝛽
a2 and a2 ⇒𝑛𝑒 𝜆x . b2. The proof can be finished off by inverting over the derivation of

a2 ⇒𝑛𝑒 𝜆x . b2. Only EP-AppEta and EP-AbsCong could have been used to derive a2 ⇒𝑛𝑒 𝜆x . b2
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since 𝜂-contracting a pair into a lambda term through rule EP-PairEta implies the existence of a

stuck term that does not belong to SN (Lemma 3.4). □

Corollary 3.1 (Strengthened 𝜂-postponement). If a ⇒𝜂 b and b {𝛽 c, then there exists some
b0 such that a {∗

𝛽
b0 and b0 ⇒𝑛𝑒 c.

Proof. Immediate by composing Lemmas 3.8 and 3.9. □

By composing Lemma 3.7 and Corollary 3.1, we obtain the final version of our theorem.

Corollary 3.2 (𝜂-postponement for normal forms). If a {∗
𝛽𝜂

u, then there exists some u0
such that a {∗

𝛽
u0 and u0 {∗

𝜂 u.

Corollary 3.2 states that if some term 𝛽𝜂-reduces to some 𝛽-normal form, then we can postpone

it in a way such that the intermediate term u0 remains in 𝛽-normal form. The fact that u0 is in
normal form is crucial for deriving the confluence result.

3.5 Confluence of 𝛽𝜂-Reduction for SN
Now, we put everything together and prove confluence using 𝜂-postponement. We start by stating

the confluence properties of 𝛽 and 𝜂-reductions on their own.

Lemma 3.10 (Confluence for 𝛽). If a {∗
𝛽
b0 and a {∗

𝛽
b1, then there exists some c such that

b0 {∗
𝛽
c and b1 {∗

𝛽
c.

Lemma 3.11 (Confluence for 𝜂). If a {∗
𝜂 b0 and a {∗

𝜂 b1, then there exists some c such that
b0 {∗

𝜂 c and b1 {∗
𝜂 c.

We omit the details of their proofs as they are standard. For our mechanization, we prove conflu-

ence for 𝛽-reduction using Takahashi’s complete development [Takahashi 1995], and confluence

for 𝜂-reduction through local confluence and Newman’s lemma.

Now we can prove our main result.

Theorem 3.1 (Confluence of 𝛽𝜂-Reduction for SN terms). If a ∈ SN, a {∗
𝛽𝜂

b0, and
a {∗

𝛽𝜂
b1, then there exists some c such that b0 {∗

𝛽𝜂
c and b1 {∗

𝛽𝜂
c.

Proof. By Lemma 3.6, we know that b0 ∈ SN and b1 ∈ SN. Therefore, there must exist some u0
and u1 such that b0 {∗

𝛽
u0 and b1 {∗

𝛽
u1. By Lemma 3.11, it suffices to show that u0 and u1 are 𝜂-

equivalent. By Corollary 3.2, we can factorize the reduction sequence a {∗
𝛽𝜂

u0 into a {∗
𝛽
u2 {∗

𝜂 u0
for some u2. Likewise, we can factorize the sequence a {∗

𝛽𝜂
u1 into a {∗

𝛽
u3 {∗

𝜂 u1 for some u3.
However, since both u2 and u3 are 𝛽-normal forms of a, they must be equal according to Lemma 3.10,

the confluence of 𝛽-reduction. From u2 = u3, We can immediately conclude that u0 and u1 are
𝜂-equivalent. The result then follows from the confluence of 𝜂-reduction (Lemma 3.11). □

3.6 Reduce-and-Compare Algorithms for Equality and Subtyping
Next, we define our reduce-and-compare algorithms. Our algorithm for definitional equality is

based on joinability.

Definition 3.1 (Joinability). We say that two terms a and b are joinable (denoted as a ↓ b) if
there exists some term c such that a {∗

𝛽𝜂
c and b {∗

𝛽𝜂
c.

A direct consequence of the 𝛽𝜂-confluence result is that 𝛽𝜂-joinability is transitive.

Lemma 3.12 (Transitivity of Joinability). If a, b, c ∈ SN and 𝑎 ↓ 𝑏 ↓ 𝑐 , then a ↓ c.
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Proof. Immediate by Theorem 3.1, Corollary 3.2, and Lemma 3.3. □

Furthermore, unlike 𝛽𝜂-equivalence, the injectivity of neutral forms for joinability is immediate

from its definition.

Lemma 3.13 (Injectivity of 𝛽𝜂-joinability).

• If e0 a0 ↓ e1 a1 , then e0 ↓ e1 and a0 ↓ a1.
• If 𝜋1 e0 ↓ 𝜋1 e1 or 𝜋2 e0 ↓ 𝜋2 e1, then e0 ↓ e1.

Because joinability is reflexive and symmetric by definition, and transitive through the reasoning

above, we can conclude that it is indeed an equivalence relation. Thus, we can use it as a syntactic

model for declarative equality by simply erasing typing information.

Next, we define a reduce-and-compare algorithm for subtyping. First, consider the following
untyped one-step subtyping relation, which compares its inputs without using 𝛽𝜂-reduction.

A ≤1 B (Untyped reductionless subtyping)

S-Refl

A ≤1 A

S-Univ

i ≤ j

Ui ≤1 Uj

S-Pi

A1 ≤1 A0 B0 ≤1 B1
Πx :A0. B0 ≤1 Πx :A1 . B1

S-Sig

A0 ≤1 A1 B0 ≤1 B1
Σx :A0. B0 ≤1 Σx :A1 . B1

We extend this definition to an algorithm for subtyping which first 𝛽𝜂-reduces its inputs.

Definition 3.2 (Untyped Subtyping). We say that A is an untyped subtype of B, which we denote
as A ≤ B, if there exists some terms C0 and C1 such that A {∗

𝛽𝜂
C0, B {∗

𝛽𝜂
C1, and C0 ≤1 C1.

We can also prove that untyped subtyping is transitive, after showing a few structural properties.

Lemma 3.14 (Sub1 Transitive). If A ≤1 B and B ≤1 C, then A ≤1 C.

Proof. We prove the following more general statement:

∀A B,A ≤1 B =⇒ ∀𝐶, (B ≤1 C =⇒ A ≤1 C) ∧ (C ≤1 A =⇒ C ≤1 B)
The proof itself is straightforward by induction over the derivation of A ≤1 B. □

Lemma 3.15 (Sub1 commutativity). If A ≤1 B and A {𝛽𝜂 A0, then ∃B0, B {𝛽𝜂 B0 ∧ A0 ≤1 B0.

Lemma 3.16 (Sub1 preserves SN). Let A, B, and C be arbitrary lambda terms. The following
statements hold.

• A ∈ SNe ∧ (A ≤1 B ∨ B ≤1 A) =⇒ A = B
• A ∈ SN ∧ (A ≤1 B ∨ B ≤1 A) =⇒ B ∈ SN
• A {SN B ∧ (A ≤1 B ∨ B ≤1 A) =⇒ A = B

Proof. By mutual induction over the SN definitions. □

The transitivity of untyped subtyping then follows as a corollary of the confluence of 𝛽𝜂-reduction

and the above lemmas.

Corollary 3.3 (Transitivity of Subtyping). If A, B,C ∈ SN and 𝐴 ≤ 𝐵 ≤ 𝐶 , then A ≤ C.

The benefit of using the directed definition of untyped subtyping (A ≤ B) over a declarative
version obtained by erasing type annotations from Γ ⊢ A ≤ B is that the following no-confusion

and injectivity properties are immediate.

Lemma 3.17 (Noconfusion for Untyped subtyping). Suppose A, B ∈ SN and A ≤ B, then the
following holds:
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• A and B cannot be type constructors with distinct head forms.
• If A is in weak head neutral form, then B cannot be a type constructor.
• If A and B are both weak head neutral forms, then they cannot have distinct elimination forms.

Lemma 3.18 (untyped injectivity of type constructors).

• If Πx :A0 . B0 ≤ Πx :A1. B1, then A1 ≤ A0 and B0 ≤ B1.
• If Σx :A0. B0 ≤ Σx :A1 . B1, then A0 ≤ A1 and B0 ≤ B1.
• IfUi ≤ Uj , then i ≤ j.

We use the the transitivity, injectivity, and no-confusion properties of joinability and untyped

subtyping in the next subsection to show that they are adequate models of the declarative relations.

3.7 Strong Normalization

JAKi ↘ 𝑆 (Logical predicate)

SWt-Pi

𝐹 ∈ Term → P(Term) JAKi ↘ 𝑆𝐴 ∀𝑎, 𝑎 ∈ 𝑆𝐴 → JB[a/x]Ki ↘ 𝐹 (a)
JΠx :A. BKi ↘ {b | b ∈ Π̂(𝑆𝐴, 𝐹 )}

SWt-Sigma

𝐹 ∈ Term → P(Term) JAKi ↘ 𝑆𝐴 ∀𝑎, 𝑎 ∈ 𝑆𝐴 → JB[a/x]Ki ↘ 𝐹 (a)
JΣx :A. BKi ↘ {c | c ∈ Σ̂(𝑆𝐴, 𝐹 )}

SWt-Step

A {SN B JBKi ↘ 𝑆

JAKi ↘ 𝑆

SWt-Univ

𝑗 < 𝑖

JUjKi ↘ {A | ∃𝑆, JAKj ↘ 𝑆}

SWt-Ne

A ∈ SNe

JAKi ↘ {a | a ∈ SNe∗}
(Auxiliary definitions)

a ∈ SNe∗ ≜ ∃b, a {∗
SN b ∧ b ∈ SNe

b ∈ Π̂(𝑆𝐴, 𝐹 ) ≜ ∀𝑎, 𝑎 ∈ 𝑆𝐴 → b a ∈ 𝐹 (a)
c ∈ Σ̂(𝑆𝐴, 𝐹 ) ≜ c ∈ SNe∗ ∨ ∃𝑎 𝑏, c {∗

SN (a, b) ∧ 𝑎 ∈ 𝑆𝐴 ∧ 𝑏 ∈ 𝐹 (𝑎)
Fig. 7. Logical Predicate

Finally, we use a logical predicate to show that all syntactically well-typed terms are contained

in SN, i.e. are strongly normalizing.

Inspired by the inductive model for universes from Abel et al. [2008], we apply the 𝑆𝑁 -

method [Joachimski and Matthes 2003] and define our logical predicate as an inductive relation

over untyped lambda terms, closed by{SN in rules SWt-Sigma, SWt-Step, and SWt-Ne.

The logical predicate (Figure 7) takes the form JAKi ↘ 𝑆 , meaning that the raw term A is a

semantically well-formed type from the ith universe and is interpreted as the set of lambda terms

𝑆 . Note that Rocq does not support the definition from Figure 7 as is because it requires nesting an

inductive definition inside a recursive function over the universe level i. Our Rocq encoding is based
on Liu et al. [2024a], which defines the predicate inductively over a parameterized interpretation of

lower universes and then ties the knot by well-founded recursion over the universe level i.
An immediate result we can show is adequacy, which implies that every well-formed type is

inhabited by terms from SNe, and every term that lives in the logical predicate is in the set 𝑆𝑁 .

Lemma 3.19 (Adeqacy). If JAKi ↘ 𝑆 , then SNe ⊆ 𝑆 ⊆ SN and A ∈ SN.
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Proof. By nested induction over the universe level i and the derivation of JAKi ↘ 𝑆 . The only

interesting cases are SWt-Pi and SWt-Sigma, both of which follow from Lemma 3.5. □

The interpreted set 𝑆 is always closed under a {SN b.

Lemma 3.20 (Backward closure). If JAKi ↘ 𝑆 , b ∈ 𝑆 , and a {SN b, then a ∈ 𝑆 .

Lemma 3.21 (Logical predicate cases). If JAKi ↘ 𝑆 , then there exists some type constructor A0

such that A {∗
SN A0 and JAKi ↘ 𝑆 .

Proof. By straightforward induction over the derivation of JAKi ↘ 𝑆 . □

The following lemma semantically justifies the untyped subtyping relation.

Lemma 3.22 (Logical predicate preserved by subtyping).

∀A B 𝑆0 𝑆1, JAKi ↘ 𝑆0 ∧ JBKi ↘ 𝑆1 ∧ A ≤ B =⇒ 𝑆0 ⊆ 𝑆1

Proof. As in Lemma 3.14, we need to prove the following generalized statement.

∀A B 𝑆0 𝑆1, JAKi ↘ 𝑆0 ∧ JBKi ↘ 𝑆1 =⇒ (A ≤ B =⇒ 𝑆0 ⊆ 𝑆1) ∧ (B ≤ A =⇒ 𝑆1 ⊆ 𝑆0)
The proof proceeds by induction over the derivation of JAKi ↘ 𝑆0 followed by case analyzing

the derivation of JBKi ↘ 𝑆 with the help of Lemma 3.21. Lemma 3.17 is used to rule out the

contradictory cases where A and B evaluates to distinct head forms. Lemma 3.18 is used to obtain

the subtyping premises required to apply the induction hypotheses.

□

The next corollary allows us to treat our logical predicate as a partial function that takes a type

and universe as inputs, and returns a set of lambda terms as its output.

Corollary 3.4 (Logical predicate is functional).

∀A 𝑆0 𝑆1, JAKi ↘ 𝑆0 ∧ JAKi ↘ 𝑆1 =⇒ 𝑆0 = 𝑆1

Proof. Immediate by instantiating Lemma 3.22 with A ≤ A. □

We can prove that the logical predicate is cumulative.

Lemma 3.23 (Logical predicate cumulativity). If JAKi ↘ 𝑆 and i ≤ j, then JAKj ↘ 𝑆 .

Proof. Immediate by induction over the derivation of JAKi ↘ 𝑆 . □

The cumulativity result allows us to strengthen Lemma 3.22 and Corollary 3.4 to not require the

universe levels of the premises to be the same. We will continue to refer to the same lemmas to avoid

duplicating the definitions, and we will implicitly compose those lemmas with the cumulativity

result as needed.

We are now ready to define the notion of closing substitution, on top of which we build our

notion of semantic typing, equality, subtyping, and context well-formedness.

Definition 3.3 (Closing substitutions). Let 𝜌 be a mapping from variables to lambda terms.
We say that 𝜌 is a closing substitution for the context Γ, denoted as 𝜌 ⊨ Γ, if for all x :A ∈ Γ, i, and 𝑆
such that JAKi ↘ 𝑆 , we have 𝜌 (x) ∈ 𝑆 .

Definition 3.4 (Semantic well-typedness). A term a is semantically well-typed with type
A under the context Γ, denoted as Γ ⊨ a : A, if for all 𝜌 ⊨ Γ, there exists some i and 𝑆 such that
JA[𝜌]Ki ↘ 𝑆 and a[𝜌] ∈ 𝑆 .
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Definition 3.5 (Semantic eqality). The terms a and b are semantically equal with type A
under the context Γ, denoted as Γ ⊨ a = b : A, when a ↓ b and Γ ⊨ a : A and Γ ⊨ b : A.

Definition 3.6 (Semantic subtyping). The term A is a semantic subtype of B under the context
Γ, denoted as Γ ⊨ A ≤ B, when A ≤ B and Γ ⊨ a : A and Γ ⊨ b : A.

Definition 3.7 (Semantic context well-formedness). The context Γ is semantically well-
formed, denoted as ⊨ Γ, when for all x :A ∈ Γ, there exists some universe level i such that Γ ⊨ A : Ui.

By unfolding the definitions above, we immediately obtain the following structural lemmas

about semantic typing.

Lemma 3.24 (Semantic Weakening). If Γ ⊨ a : A and Γ ⊨ B : Ui then Γ, x :B ⊨ a : A

Lemma 3.25 (Semantic Substitution). If Γ ⊨ a : A and Γ, x :A ⊨ b : B then Γ ⊨ b[a/x] : B[a/x]

Similar results for equality and subtyping are omitted as they directly follow from the above.

Context well-formedness satisfies the following structural lemmas.

Lemma 3.26 (Structural rules for semantic well-formedness).

⊨ · ⊨ Γ and Γ ⊨ A : Ui implies ⊨ Γ, x :A

Proof. The empty context case is trivial. The cons case requires Lemma 3.24. □

Note that all of the structural rules we have seen so far can be proven by unfolding the definition

of semantic typing. Thus, they are useful for organizing the proof but are not necessary for deriving

the fundamental theorem.

Theorem 3.2 (Fundamental Theorem).

• ⊢ Γ implies ⊨ Γ
• Γ ⊢ a : A implies Γ ⊨ a : A
• Γ ⊢ a = b : A implies Γ ⊨ a = b : A
• Γ ⊢ A ≤ B implies Γ ⊨ A ≤ B

Proof. By mutual induction over the typing judgments and the structural lemmas. □

Corollary 3.5 (Well-typed strong normalization). If Γ ⊢ a : A then a ∈ SN and A ∈ SN.
Corollary 3.6 (Completeness of reduce-and-compare).

• Γ ⊢ A ≤ B implies A ≤ B
• Γ ⊢ a = b : A implies a ↓ b

4 Total Correctness via Coquand’s Algorithm
Corollary 3.6 gives us the completeness of the reduce-and-compare algorithm with respect to

typed definitional equality and subtyping. To prove its soundness, a sufficient condition is to show

that 𝛽𝜂-reduction is type-preserving. Unfortunately, 𝛽𝜂-reduction is known to violate subject

reduction [Abel and Coquand 2007; Lennon-Bertrand 2022].

However, 𝜂-expansion, based on either the shape of the term or its type, is type-preserving. As

a result, it is easier to show the soundness of algorithms that perform 𝜂-expansion with respect

to typed convertibility. Therefore, we next use Coquand’s algorithm extended with surjective

pairing [Abel and Coquand 2007; Coquand 1991], which is based on 𝜂-expansion, as a bridge to

show the soundness of our normalize-and-compare algorithm.

This detour through Coquand’s algorithm is itself worthwhile as we gain a correctness proof for

a second decision procedure, which can be more efficient.



736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Yiyun Liu and Stephanie Weirich

Definitional Subtyping (Γ ⊢ A ≤ B)

Reduce-and-Compare (Γ ⊢ 𝐴, 𝐵 : Ui ∧ A ≤ B)

Coquand’s Algorithm (Γ ⊢ 𝐴, 𝐵 : Ui ∧ A ≪ B)

Corollary 3.6

Lemma 4.8

Lemma 4.4

Fig. 8. Equivalence of Algorithmic and Declarative Subtyping Relations

In this section, we first extend the syntactic metatheory of Coquand’s algorithm [Goguen

2005] with pairs and subtyping. We then show that this extended version of Coquand’s algorithm

is sound with respect to typed convertibility (Lemma 4.4), complete with respect to untyped

subtyping (Lemma 4.8), and terminates on SN terms (Lemma 4.6). The soundness and completeness

results allows us to show that Coquand’s algorithm, the reduce-and-compare algorithm, and

typed convertibility are equivalent on well-typed terms, following the diagram in Figure 8. This

equivalence result, combined with termination, completes our main decidability proof.

The most involved part of this process is the completeness proof (Lemma 4.8). We need to convert

a potentially non-type preserving 𝛽𝜂-reduction sequence into a run of Coquand’s algorithm: 𝛽-

reductions interleaved with 𝜂-expansions. Goguen [2005] shows that Coquand’s algorithm (with

only function 𝜂-law) can be syntactically justified from the confluence of 𝛽𝜂-reduction. We apply

this technique to justify the completeness of both the subtyping and equality relation.

4.1 Coquand’s Algorithmic Conversion by 𝜂-Expansion
Our version of Coquand’s algorithmic equality, based on Coquand [1991] and Abel and Coquand

[2007], is as follows.

a ↔ b (Algorithmic equality)
CE-Red

a {∗
ℎ
f0 b {∗

ℎ
f1 f0 ∼ f1

a ↔ b

f0 ∼ f1 (Algorithmic equality for head normal forms)

CE-Var

x ∼ x

CE-Abs

a ↔ b

𝜆x . a ∼ 𝜆x . b

CE-AbsNeu

a ↔ e x x ∉ freevar(𝑎)
𝜆x . a ∼ e

CE-NeuAbs

e x ↔ b x ∉ freevar(𝑎)
e ∼ 𝜆x . b

CE-Pair

a0 ↔ a1 b0 ↔ b1
(a0, b0) ∼ (a1, b1)

CE-PairNeu

a0 ↔ 𝜋1 e b0 ↔ 𝜋2 e

(a0, b0) ∼ e

CE-NeuPair

𝜋1 e ↔ a0 𝜋2 e ↔ b0
e ∼ (a0, b0)

CE-Univ

Ui ∼ Ui

CE-Pi

A0 ↔ A1 B0 ↔ B1
Πx :A0. B0 ∼ Πx :A1 . B1

CE-App

e0 ∼ e1 a0 ↔ a1
e0 a0 ∼ e1 a1

CE-Fst

e0 ∼ e1
𝜋1 e0 ∼ 𝜋1 e1

CE-Snd

e0 ∼ e1
𝜋2 e0 ∼ 𝜋2 e1

We follow Goguen [2005] and split algorithmic equality into two mutually defined relations, where

a ↔ b is the top-level definition for algorithmic equality with a single rule that evaluates a and b
into their respective weak head normal forms f0 and f1, and then check that f0 ∼ f1 through the

auxiliary relation defined only for weak head normal forms.
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Inspired by Coquand’s equality algorithm, we define the algorithmic subtyping relation below,

which performs weak-head reduction and compares types in weak-head normal forms.

A ≪ B (Algorithmic subtyping)
CLE-Red

A {∗
ℎ
f0 B {∗

ℎ
f1 f0 ≲ f1

A ≪ B

f0 ≲ f1 (Algorithmic subtyping for head normal forms)

CLE-Univ

i ≤ j

Ui ≲ Uj

CLE-Pi

A1 ≪ A0 B0 ≪ B1
Πx :A0. B0 ≲ Πx :A1. B1

CLE-Sig

A0 ≪ A1 B0 ≪ B1
Σx :A0. B0 ≲ Σx :A1. B1

CLE-NeuNeu

e0 ∼ e1
e0 ≲ e1

Above, A ≪ B is the top-level subtyping relation defined over arbitrary terms and f0 ≲ f1 the
auxiliary subtyping relation over weak head normal forms. For convenience, we refer to both the

equality and subtyping relations as Coquand’s algorithm.

Coquand’s algorithm uses the shape of the two terms being compared to guide 𝜂-expansion. In

rule CE-AbsNeu, we have a lambda term 𝜆x . a on the left-hand side and a weak neutral term e on
the right-hand side. Thus, the only way to make progress is to 𝜂-expand 𝑒 into 𝜆x . e x so we can

check the equality by comparing its body e x to a, the body of 𝜆x . a.
The subtyping relation assumes that the terms being related are types. In cases where either side

of A ≪ B reduce to a term constructor such as a lambda term or a pair, the algorithm returns false.

When both A and B are in weak-head neutral form, CLE-NeuNeu falls back to checking whether A
and B are equal neutral terms.

4.2 Soundness of Coquand’s Algorithm
The soundness property states that well-typed terms related by algorithmic conversion must also

be convertible by the type-annotated subtyping relation. The proof of soundness, at a high-level,

amounts to showing that given Γ ⊢ A : Ui, Γ ⊢ B : Ui and A ≪ B, only well-typed terms appear in

the derivation tree of A ≪ B.
Before we dive into the soundness proof, we state two corollaries of the normalization prop-

erty (Corollary 3.5) that we use to reason about subtyping.

Lemma 4.1 (Pi subtyping). If Γ ⊢ Πx :A. B ≤ C or Γ ⊢ C ≤ Πx :A. B, then there exists some A0, B0,
and i such that Γ ⊢ C = Πx :A0 . B0 : Ui.

Lemma 4.2 (Univ subtyping). If Γ ⊢ Ui ≤ C or Γ ⊢ C ≤ Ui, then there exists some j and k such
that Γ ⊢ C =Uj : Uk .

Now we can show the soundness of Coquand’s equality with respect to definitional equality.

Lemma 4.3 (Soundness for Algorithmic Eqality).

• If a ↔ b and Γ ⊢ a : A and Γ ⊢ b : A, then Γ ⊢ a = b : A.
• If f0 ∼ f1, then

– if Γ ⊢ f0 : A and Γ ⊢ f1 : A, then Γ ⊢ f0 = f1 : A.
– if f0 ∼ f1 and both f0 and f1 are neutral, then if Γ ⊢ f0 : A and Γ ⊢ f1 : B, there exists some

C such that Γ ⊢ C ≤ A, Γ ⊢ C ≤ B, and Γ ⊢ f0 = f1 : C.

Proof. By mutual induction over the derivations of a ↔ b and f0 ∼ f1. We consider only case

CE-App to highlight complexities introduced by subtyping. Suppose we have f0 = e0 a0 ∼ e1 a1 = f1
It suffices to show that the third bullet point holds as it subsumes the second bullet point when
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both terms are neutral. Suppose also that Γ ⊢ e0 a0 : A and Γ ⊢ e1 a1 : B for some A and B. By the

generation lemma (Lemma 2.2), there exists some terms A0, B0, A1 and B1 such that Γ ⊢ e0 : Πx :
A0 . B0, Γ ⊢ e1 : Πx :A1. B1, Γ ⊢ a0 : A0, Γ ⊢ a1 : A1, Γ ⊢ B0 [a0/x] ≤ A and Γ ⊢ B1 [a1/x] ≤ B.
Applying the induction hypothesis to the neutral forms e0 and e1, we know that there exists

some type C such that Γ ⊢ e0 = e1 : C where Γ ⊢ C ≤ Πx :A0. B0 and Γ ⊢ C ≤ Πx :A1. B1.
By Lemma 4.1, there exists types A2, B2 and i such that Γ ⊢ Πx :A2 . B2 = C : Ui.

Therefore, we can replace the occurrences of C with Πx :A2. B2, obtaining the following state-
ments.

• Γ ⊢ e0 = e1 : Πx :A2 . B2
• Γ ⊢ Πx :A2. B2 ≤ Πx :A0. B0
• Γ ⊢ Πx :A2. B2 ≤ Πx :A1. B1

By the injectivity rule L-PiProjOne, we deduce Γ ⊢ A0 ≤ A2 and Γ ⊢ A1 ≤ A2. This allows us to

convert the type of both a0 and a1 to A2, so we can obtain Γ ⊢ a0 = a1 : A2 from the induction

hypothesis. By rule E-App, we have Γ ⊢ e0 a0 = e1 a1 : B2 [a0/x]. It now suffices to show that

Γ ⊢ B2 [a0/x] ≤ B0 [a0/x] and Γ ⊢ B2 [a0/x] ≤ B1 [a1/x].
We can prove Γ ⊢ B2 [a0/x] ≤ B0 [a0/x] immediately by L-PiProjTwo. To prove Γ ⊢ B2 [a0/x] ≤

B1 [a1/x], we cannot directly apply rule L-PiProjTwo as a0 is not necessarily typed under A1.

Instead, we need to first apply transitivity and show Γ ⊢ B2 [a0/x] ≤ B2 [a1/x] ≤ B1 [a1/x]. The two
subgoals then follow from L-PiProjTwo. □

The soundness property for subtyping is formulated similarly, though we do not need to include

the special case when both types A and B are neutral since subtyping for neutral types degenerate

into equality, whose soundness we have already proven.

Lemma 4.4 (Soundness for Algorithmic Subtyping).

• If A ≪ B, and Γ ⊢ A : Ui and Γ ⊢ B : Ui, then Γ ⊢ A ≤ B.
• If f0 ≲ f1, and Γ ⊢ f0 : Ui and Γ ⊢ f1 : Ui, then Γ ⊢ f0 ≤ f1.

Proof. By mutual induction on A ≲ B and A ≪ B. The only interesting case is CLE-NeuNeu,

where A and B are neutral. We finish the proof by simply composing Lemma 4.3 and rule L-Eq. □

4.3 Termination of Coquand’s Algorithm
To prove termination, we use a termination metric over the input terms a and b from Goguen

[2005], extended to include pairs. (A similar metric with pairs but only for 𝛽-forms can be found in

Abel and Coquand [2007].)

Definition 4.1 (Termination Metric for Coqand’s Algorithm). Given two 𝛽-normalizing
terms a and b, there must exists some 𝛽-normal forms u0 and u1 such that a {∗

𝑙𝑜
u0 and b {∗

𝑙𝑜
u1. Let

𝑚 and 𝑛 be the number of steps it takes for a and b to reduce to their respective normal form, we define
the termination metric T (a, b) =𝑚 + 𝑛 + |u0 | + |u1 |, where the | · | is a size function over lambda
terms, defined as follows.

|𝜆x . a| = 3 + |a|
|a b| = 1 + |a| + |b|

| (a, b) | = 3 + |a| + |b|
|𝜋1 a| = 1 + |a|
|𝜋2 a| = 1 + |a|

. . .

The | · | function weighs constructors more than elimination forms, allowing us to show that the

inputs to recursive calls in CE-AbsNeu and CE-PairNeu are decreasing.
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Goguen [2005] uses the definition of T as metric for both the termination and completeness

proof. We take a more modular approach by introducing an intermediate inductive relation that

characterizes the domain of the conversion algorithm. The intermediate relation serves two purposes.

First, once we have shown that every pair of terms a and b such that T (𝑎, 𝑏) is defined inhabit

the domain, then we can immediately recover termination by the Bove-Capretta method [Bove

and Capretta 2005]. Second, the intermediate relation abstracts away the low-level details of the

termination metric and allows us to reason by induction over the call-graph of the algorithm,

significantly simplifying our reasoning.

We write the relations encoding the domains for equality and subtyping as (f0, f1) ∈ A and

(f0, f1) ∈ S, which correspond to f0 ∼ f1 and f0 ≲ f1, and (a, b) ∈ A∗
and (A, B) ∈ S∗

, which

correspond to a ↔ b and A ≪ B. We omit the definition of these relations here as they are

a straightforward application of the Bove-Capretta method. The definition can be found in the

supplementary material.

The following properties can be proven by induction over the termination metric. We omit the

proof, as it follows the exact same structure as the termination proof by Goguen [2005].

Lemma 4.5 (Metric implies Domain). If there exists some𝑛 such thatT (a, b) = 𝑛, then (a, b) ∈ A∗

and (a, b) ∈ S∗.

By Corollary 3.5, all well-typed terms are strongly normalizing, and therefore for every pair of

terms a and b, T (a, b) is defined. By Lemma 4.5, we deduce that (a, b) ∈ A∗
and (a, b) ∈ S∗

, and

we can then define the equality and subtyping functions recursively over the derivations of the

domains, concluding the proof of the following termination result.

Lemma 4.6 (Termination of Coqand’s Algorithm). If Γ ⊢ A : Ui and Γ ⊢ B : Ui , then A ≪ B
terminates.

Furthermore, fixing a and b as inputs, we can show that the derivation of (a, b) ∈ A∗
or

(a, b) ∈ S∗
does not affect the result of the algorithm. In our Rocq mechanization, we leverage this

irrelevance property to place the domain definitions in the Prop sort so the extracted conversion

algorithm does not have to compute the proofs or recurse over a gas parameter.

4.4 Completeness of Coquand’s Algorithm w.r.t Untyped Subtyping
To show completeness, we reuse the domain definitions from Section 4.3 as our induction metric

and formulate the completeness theorem as follows.

Lemma 4.7 (Completeness of Algorithmic Eqality (auxiliary)).

• If (a, b) ∈ A∗, Γ ⊢ a : A, Γ ⊢ b : A and a ↓ b, then a ↔ b.
• If (f0, f1) ∈ A, then

– if Γ ⊢ f0 : A, Γ ⊢ f1 : A and f0 ↓ f1, then f0 ∼ f1.
– if f0 and f1 are both weak head neutral forms, then given Γ ⊢ f0 : A, Γ ⊢ f1 : B and f0 ↓ f1,

we have f0 ∼ f1.

Proof. By mutual induction over the derivations of (a, b) ∈ A∗
and (f0, f1) ∈ A. The proof

obligations can be split into two categories: proving the well-typedness of the subterms to be able

to invoke the inductive hypotheses, and showing that the recursive calls are made on terms are

still 𝛽𝜂-joinable so we can meet the prerequisite for applying the induction hypotheses.

We consider the case for rule A-AppCong as an example. In case A-AppCong, we have

(e0 a0, e1 a1) ∈ A where (a0, a1) ∈ A∗
, (e0, e1) ∈ A, Γ ⊢ e0 a0 : C0, Γ ⊢ e1 a1 : C1, and e0 a0 ↓ e1 a1.

By the Generation Lemma (Lemma 2.2), there exists some A0 A1 B0 B1 such that Γ ⊢ e0 : Πx :A0. B0,
Γ ⊢ a0 : A0, Γ ⊢ e1 : Πx :A1. B1, Γ ⊢ a1 : A1.
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By the injectivity of application forms for 𝛽𝜂-joinability (Lemma 3.13), we deduce from e0 a0 ↓
e1 a1 that e0 ↓ e1 and a0 ↓ a1. Since we also know that Γ ⊢ e0 : Πx :A1. B1, Γ ⊢ e1 : Πx :A0 . B0 from
the generation lemma, we can invoke the induction hypothesis and derive e0 ∼ e1.

By Lemma 4.3, we know that there exists a common subtype C for Πx :A0. B0 and Πx :A1. B1. By
Lemma 4.1 and rule L-PiProjOne, there exists some A2 such that Γ ⊢ A0 ≤ A2, Γ ⊢ A1 ≤ A2. Thus,

we have Γ ⊢ a0 : A2, Γ ⊢ a1 : A2, and a0 ↓ a1. By the induction hypothesis, we deduce a0 ↔ a1.
From e0 ∼ e1 and a0 ↔ a1, we conclude that e0 a0 ∼ e1 a1. □

The completeness of algorithmic subtyping is stated as follows.

Lemma 4.8 (Completeness of Coqand’s Algorithmic Subtyping (auxiliary)).

• If (f0, f1) ∈ S, Γ ⊢ f0 : Ui, Γ ⊢ f1 : Ui, and f0 ≤ f1, then f0 ≲ f1.
• If (A, B) ∈ S∗, Γ ⊢ A : Ui, Γ ⊢ B : Ui, and A ≤ B, then A ≪ B.

Proof. By mutual induction over the derivations of (A, B) ∈ S∗
and (A, B) ∈ S. The neutral

case (CLE-NeuNeu) requires Lemma 4.7. □

Composing the completeness of Coquand’s algorithm with respect to untyped subtyping

(Lemma 4.8), the soundness of Coquand’s algorithm with respect to definitional subtyping

(Lemma 4.4), and the completeness of untyped subtyping with respect to definitional subtyping

(Corollary 3.6), we conclude our decidability proof with the following equivalence results.

Lemma 4.9 (Reduce-and-compare and Coqand’s Algorithm are Correct). Given Γ ⊢ A : Ui
and Γ ⊢ B : Uj , the statements Γ ⊢ A ≤ B, A ≤ B, and A ≪ B are all equivalent.

Theorem 4.1 (Type Conversion is Decidable). Given Γ ⊢ A : Ui and Γ ⊢ B : Uj , the relation
Γ ⊢ A ≤ B is decidable.

5 Discussion
5.1 Admissibility of Π-Injectivity
One nonstandard feature of 𝜆Π,Σ,𝑈𝑖 ,N

is the inclusion of the injectivity rules L-PiProj1 and L-PiProj2.

We explicitly add these rules as part of the definitional subtyping relation so that we can prove

subject reduction syntactically, simplifying the definition of our logical predicate in Section 3.7.

These injectivity rules are sound and justified by our algorithm so they do not compromise the

implementation of type checking. Indeed, the results from Section 4 allow us to replace conversion

ruleWt-Conv with the following rule based on algorithmic subtyping.

Wt-AConv

Γ ⊢ a : A Γ ⊢ B : Ui A ≪ B

Γ ⊢ a : B

Algorithmic subtyping does not depend on definitional equality, so the inclusion of injectivity rules

in the latter does not affect the implementation of the type checker.

That said, it is difficult to remove the injectivity rules from the specification of the type system.

While the rules do not affect the operation of algorithm, they are needed to show its correctness.

The justification of ruleWt-AConv ultimately relies on subject reduction, which in turn depends

on Π-injectivity. Therefore, the correctness of rule Wt-AConv does not imply that Π-injectivity is

admissible.

Why would we want to show that Π-injectivity is admissible? After all, they causes no issues

with our implementation and we have shown that the type system with these rules is decidable.

The real issue lies in model construction. While the reducibility model in Section 4 satisfies the

injectivity of type constructors, there also exist models of dependent type theory where injectivity



981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Algorithmic Conversion with Surjective Pairing: A Syntactic and Untyped Approach 21

of type constructors is not true. For example, the standard set theoretic models by Miquel and

Werner [2003] and Timany and Sozeau [2017] forget too much information about the syntax of the

type theory for injectivity to hold semantically. But, the contravariant subtyping rule for function

types already rules out set theoretic models for 𝜆Π,Σ,𝑈𝑖 ,N
. Therefore, we see no little reason to avoid

the inclusion of the injectivity rules that simplify our proofs.

Alternatively, if the admissibility of type injectivity is needed, it is possible to replace the

logical predicate in Section 3.7 with a Kripke-style logical relation, from which injectivity of type

constructors and strong normalization can both be derived at once. The Kripke-style logical relation

can remain oblivious of the algorithmic conversion rules as the correctness of the algorithm can

be obtained by composing Π-injectivity and strong 𝛽-normalization with our syntactic proof in

Section 4. Thus, while we would still need to pay the cost of constructing a PER model to obtain

Π-injectivity, we can avoid the intricate setup of a parameterized generic equality found in Abel

et al. [2017]; Adjedj et al. [2024] and keep our Kripke-style logical relation minimal.

5.2 Annotated Lambda Terms
Another slightly nonstandard feature of 𝜆Π,Σ,𝑈𝑖 ,N

is that function abstractions are not annotated with

the types of their arguments. Such annotations are known to invalidate the confluence property

for 𝛽𝜂-reduction. Suppose 𝑥 , 𝑦, and 𝑧 are distinct variables, the term 𝜆𝑥 :𝐴.(𝜆𝑦 :𝐵.𝑧)𝑥 can either

𝜂-reduced to 𝜆𝑦 :𝐵.𝑧 or 𝛽-reduced to 𝜆𝑥 :𝐴.𝑧. Thus, when 𝐴 and 𝐵 are distinct types, we obtain a

counterexample to confluence.

However, the type system is designed such that annotating the lambda terms with types should

not lead to significant changes to our proof development. Suppose the terms 𝜆𝑥 :𝐴.𝑎 and 𝜆𝑥 :𝐵.𝑏

share the same type. By the generation lemma, we can find some common subtype 𝐶 of the types

𝐴 and 𝐵. If we continue to use rule E-AbsExt to subsume both the congruence and 𝜂-law for

abstractions, then there is no need to explicitly compare the annotations𝐴 and 𝐵 as the congruence

rule implied by rule E-AbsExt identifies lambda terms whose domains share a common subtype.

Thus, the 𝛽𝜂-confluence result over erased lambda terms is sufficient to justify the correctness of

the algorithm, even though the syntax involves type-annotated lambdas. In our work, we consider

only unannotated lambda terms so we do not have to prove more simulation/commutativity lemmas

between erasure, one-step subtyping, and reduction.

What happens if the declarative system explicitly requires the annotations to be equal in the

congruence rule for abstractions, in a way that is not supported by the generation lemma? For

example, suppose we are working with a pure-type system without uniqueness of sorts, and we

replace rule E-AbsExt with the following congruence rule for type-annotated abstractions (cf. Siles

and Herbelin [2012]).

E-AbsCong

Γ ⊢ A = A0 : Ui Γ, x :A ⊢ B : Ui Γ, x :A ⊢ a = b : B

Γ ⊢ 𝜆x :A. a = 𝜆x :A0. b : Πx :A. B

In that case, we could not use the 𝛽𝜂-confluence result over erased lambda terms. The conversion

algorithm would be forced to compare annotations, but 𝛽𝜂-joinability over erased terms does not

include enough information about the annotations.

5.3 Relaxing the SN Condition
Our confluence property for 𝛽𝜂-contraction holds only for the terms in the set SN. However, this
condition is stronger than necessary.
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We use SN in two ways. To derive 𝜂-postponement, we use the SN predicate to rule out terms that

can step into stuck forms. To derive 𝛽𝜂-confluence, we also use the SN predicate to find 𝛽-normal

forms.

However, to rule out terms that can get stuck, it suffices to find a predicate 𝑃 that satisfies

following properties, which do not imply that terms are strongly normalizing:

• If 𝑃 (𝑎) holds, then 𝑎 is not a stuck term.

• If 𝑃 (𝑎) holds, then 𝑃 (𝑏) holds if 𝑏 is a subterm of 𝑎.

• If 𝑃 (𝑎) holds and 𝑎 {𝛽𝜂 𝑏, then 𝑃 (𝑏) holds.
In our Rocq development, our 𝜂-postponement property is parameterized over such a predicate 𝑃 .

An alternative to SN is a predicate that holds precisely when terms cannot reduce to a stuck

state. Consider the following coinductively defined set.

Definition 5.1. We define okay as the the largest set of untyped lambda terms that satisfies the
following properties.

• If a ∈ okay, then a does not contain any stuck subterms.
• If a ∈ okay and a {𝛽𝜂 b, then b ∈ okay.

Note that okay contains the non-terminating term (𝜆x . x x) (𝜆x . x x) since it loops without ever
reaching a stuck state.

Proposition 5.1. Terms in the set okay satisfy the postponement of 𝜂-reductions.

Proof. It suffices to show that okay satisfies the three condition we specify above.

The first and third properties are immediate by definition. The second property can be verified

by the coinduction principle. □

Thus, the 𝜂-postponement proof can be extended to systems that are not necessarily terminating

as long as the terms do not get stuck. In particular, showing that all well-typed terms are okay, a
similar property to type safety, is sufficient.

To derive 𝛽𝜂-confluence from 𝜂-postponement, we do not need all reduction sequences to

result in a 𝛽-normal form, we only need one reduction sequence to terminate. Thus, assuming

𝜂-postponement, we can obtain 𝛽𝜂-confluence from weak 𝛽-normalization.

6 Related Work
6.1 Syntactic Methods for Type Conversion
In this section, we compare our approachwith other syntactic proofs of decidable type conversion for

typed 𝛽𝜂-equality. (In systems with untyped 𝛽-equivalence as definitional equality, the decidability

of type conversion follows immediately from strong normalization and confluence [Barendregt

1993; Geuvers 1994; Luo 1990].)

Goguen [2005] proves the decidability of a logical framework with a typed 𝛽𝜂-equality as its

convertibility relation. This system contains only the 𝜂-law for functions; surjective pairing is not

considered. Unlike 𝜆Π,Σ,𝑈𝑖 ,N
, the logical framework does not support large eliminations or polymor-

phism. Goguen shows that the soundness, completeness, and termination of Coquand’s untyped

algorithm [Coquand 1991] and Pfenning and Harper’s typed algorithm [Harper and Pfenning

2005] can be justified by a syntactic proof parameterized over the confluence of 𝛽𝜂-reduction and

metatheoretic properties about the type system, including normalization and subject reduction (for

𝛽𝜂-reduction). Instead of proving completeness with respect to the typed definitional equality, he

proves the completeness of algorithmic conversion with respect to untyped 𝛽𝜂-equivalence. That

is, if two well-typed terms 𝛽𝜂-reduce to the same term, then one can show their equivalence by

performing 𝜂-expansion and 𝛽-reduction.
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In our work, we make the observation that we can perform Goguen’s completeness proof without

requiring 𝜂-reduction to be type-preserving. This allows us to use the completeness proof as a

bridge to relate untyped 𝛽𝜂-reduction, which can relate ill-typed terms, to the typed convertibility

relation, which only relates well-typed terms. Furthermore, our development applies to a more

expressive language, which includes large eliminations, surjective pairing, and subtyping. The

latter two features mean that we must rely on SN to show confluence and that our development

cannot rely on the uniqueness of typing.

Abel and Coquand [2007] use a PER model to justify two conversion algorithms for a Curry-style

logical framework that includes surjective pairing. Like later work by Abel and Scherer [2012],

Abel and Coquand [2007] avoid the confluence problem that comes with surjective pairing by

using the extensionality of the PER to model the 𝜂-laws from definitional equality. Instead, the PER

model directly justifies a specific reduce-and-compare algorithm that compares the 𝜂-equivalence

of 𝛽-normal forms. Similar to our development, the correctness of Coquand’s algorithm is proven

syntactically by showing its completeness with respect to the reduce-and-compare algorithm. The

lack of a confluence result means that other variants of reduce-and-compare algorithm that may

interleave 𝛽 and 𝜂-reduction are not justified. Furthermore, to prove the completeness of Coquand’s

algorithm, Abel and Coquand start by proving it complete with respect to 𝛽-normal forms and then

lift the result to include 𝛽-normalizing terms. In our development, the confluence result allows us

to directly prove completeness with respect to 𝛽-normalizing terms. Finally, our proof is simpler as

it only involves a logical predicate. Because convertibility in our system is modeled as untyped

𝛽𝜂-reduction, our proof is compatible with untyped definitional equality and we can add subtyping

to our system without any no changes to the logical predicate.

Lennon-Bertrand [2025] proves in Rocq the positive soundness, negative soundness, and termi-

nation of algorithmic conversion for a Martin-Löf type theory with one universe. The negative

and positive soundness results ensure that the algorithm, upon termination, returns true precisely

when its inputs are definitionally equal. This relaxation of the termination condition allows Lennon-

Bertrand [2025] to formulate correctness properties for type systems that are not normalizing.

Similar to our work, Lennon-Bertrand [2025] identifies several injectivity and normalization

properties that are needed to carry out a syntactic correctness proof. However, the injectivity

properties required by Lennon-Bertrand [2025] differ from ours in that they are about the typed

definitional equality, whereas the injectivity properties we prove to justify our algorithm are about

joinability, an untyped relation.

Proving typed injectivity and normalization properties has the benefit of being compatible with

singleton 𝜂-laws. However, the typed properties not only requires a more complicated logical

relation, but can also cause problems when trying to separate the semantic and syntactic proofs.

Lennon-Bertrand [2025] prove the deep normalization property, which is needed for termination,

using the logical relation by Adjedj et al. [2024]. The same fundamental theorem used to show deep

normalization, however, already implies the completeness of algorithmic conversion! Thus, when

total correctness is concerned, the proof development by Lennon-Bertrand [2025], composed with

the logical relation by Adjedj et al. [2024], does not completely decouple the logical relation from

the syntactic proof about the termination of the algorithm. As part of future work, Lennon-Bertrand

[2025] suggests alternative ways of showing neutral injectivity or termination that do not require

the detour to the completeness result of algorithmic conversion, such as the domain theoretic

method by Coquand and Huber [2019].

6.2 Mechanized Metatheory for Dependent Types
All of our results have been mechanized using the Rocq proof assistant [Team 2024], leading to

a preference for syntactic reasoning, which is convenient and well supported by this tool. We
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leverage the rich ecosystem of Rocq to aid our proof development; we use CoqHammer [Czajka

and Kaliszyk 2018] to automate our proof scripts, and Autosubst [Dapprich and Dudenhefner 2021]

to generate and reason about the de Bruijn representation of our syntax. However, we are not the

first to use a proof assistant to reason about dependent type theories and we draw on prior efforts.

Barras [1996] uses the Rocq (Coq) proof assistant to mechanize the strong normalization the

Calculus of Constructions (CoC) and extract a decidable type checker. CoC, as an instance of Baren-

dregt’s Pure Type Systems (PTS) [Barendregt 1991], uses untyped 𝛽-equivalence as its definitional

equality. The conversion algorithm, which compares 𝛽-normal forms of its input, is thus directly

justified by the confluence of 𝛽-reduction.

Liu et al. [2025] mechanize in Rocq the decidability of conversion for DCOI, a dependently typed

language that supports proof-irrelevance. The definitional equality of DCOI replaces 𝛼-equivalence

with a notion of syntactic indistinguishability, which ignores components of the term that cannot

be distinguished by a specified observer level. The conversion algorithm checks the syntactic

indistinguishability of the 𝛽-normal forms of its inputs. They prove the correctness of the algorithm

syntactically by composing normalization, 𝛽-confluence, and simulation properties which relate

𝛽-reduction and syntactic indistinguishability.

Our proof shares a similar architecture to that found in Barras [1996] and Liu et al. [2025]. Both

of these works use confluence-based approach to show the decidability of algorithmic conversion.

This paper shows that the same approach works for systems with 𝜂-laws for functions and pairs.

Other projects that mechanize results about dependent-type theory use methods that are less

related to this work.

Abel et al. [2017] use Agda to show the decidability of type conversion for a dependent type

theory with one fixed universe. The algorithm used to decide type conversion is type directed and is

similar to the one found in Harper and Pfenning [2005]. This work, like Harper and Pfenning [2005]

and Abel and Scherer [2012], uses a Kripke-style logical relation to show the total correctness of

the algorithm. To avoid having to define two separate logical relations, one for soundness and

one for completeness, Abel et al. parameterize their logical relation by a relation called generic
equality. A generic equality consists of an equality between types, an equality between terms, and

another equality specifically for neutral terms. They then prove that the fundamental theorem

holds for generic equalities that satisfy an interface of required properties. Thus, the soundness

and completeness proofs now require proving that different equalities satisfy the interface, and the

fundamental theorem only needs to be proven once. Adjedj et al. [2024] adopt the same technique

of a parameterized logical relation in Rocq to not only show the decidability of type conversion,

but also show the decidability of type checking through a bidirectional type checker.

Wieczorek and Biernacki [2018] mechanize the correctness of a normalization by evaluation

(NbE) algorithm for a dependent type theory with one universe in Rocq, following the pen and

paper proof by Abel [2013]. Similarly, Hu et al. [2023] mechanize NbE for a modal dependent type

theory with a cumulative universe in Agda. Building on the proof development by Hu et al. [2023],

Jang et al. [2025] mechanize the correctness of an NbE algorithm for a more expressive dependent

type theory that also supports subtyping, similar to 𝜆Π,Σ,𝑈𝑖 ,N
. Jang et al. [2025], like Adjedj et al.

[2024], also include a decidable type checker on top of the decidable conversion algorithm. The

subtyping relation in Jang et al. [2025] is covariant on functions, whereas our subtyping relation is

contravariant on functions.

Altenkirch and Kaposi [2016] mechanize the correctness of NbE for a dependent type theory

with a single universe in Agda. Instead of working on explicit syntax, they employ an algebraic

representation of the type system as categories with families [Hofmann and Hofmann 1997],

encoded as a quotient inductive type [Altenkirch et al. 2018], where terms, which are always

well-typed, are quotiented by definitional equality. Unlike the proofs we have discussed so far
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(including our own), Altenkirch and Kaposi [2016] use a proof-relevant logical predicate, where the
evidence that a term is reducible is not an irrelevant proof object, but a computationally relevant

structure. The proof-relevance of the logical predicate sidesteps the need for an extensional PER

model to justify the 𝜂-laws [Coquand 2019]. In our work, we show that a proof-irrelevant logical
predicate can also help avoid an extensional model by leveraging the confluence of 𝛽𝜂-reduction.

Barras [2012] axiomatizes set theory in Rocq, and then models Calculus of Inductive of Con-

structions (CIC) using the formalized set theory. The axiomatization of set theory requires adding

additional axioms to Rocq, but also allows Barras to model the universe hierarchy with an impred-

icative Prop sort, which cannot be inductively defined.

Sozeau et al. [2019] prove the correctness of a type checker for a subset of Rocq that contains only

𝛽-rules. Due to Gödel’s incompleteness theorem, Sozeau et al. [2019] formulate their correctness

result syntactically by assuming strong normalization.

Kravchuk-Kirilyuk et al. [2020] extend the core language for Dependent Haskell [Weirich et al.

2017] with function 𝜂-laws in Rocq. The decidability of conversion for System DC, an annotated

version of the core calculus, has a direct syntactic proof since the type checker only needs to validate

traces of reduction sequences that are part of the term syntax. The confluence of 𝛽𝜂-equivalence is

used to justify the consistency its extensionally flavored equational theory.

7 Conclusion and Future Work
In this work, we show the decidability of type conversion for an expressive dependent type

theory with function and pair 𝜂-laws. To show the confluence of untyped 𝛽𝜂-reduction, we use

the inductively defined strongly normalizing terms of Van Raamsdonk and Severi [1995]. From

confluence and the normalization of well-typed terms, we derive a syntactic proof of the total

correctness of Coquand’s algorithm (extended with subtyping) and of a reduce-and-compare

algorithm. Our object language (𝜆Π,Σ,𝑈𝑖 ,N
) is expressive and demonstrates that the features of modern

proof assistants, such as subtyping, large eliminations, and inductive datatypes, are compatible

with this approach. We have mechanized all of our proofs using the Rocq theorem prover.

Our proof method is novel as it uses a syntactic confluence proof to directly model typed

convertibility as untyped 𝛽𝜂-reduction. Compared to existing proof methods, our confluence-based

approach is compatible with untyped convertibility and modularly combines a minimal semantic

proof of normalization with a syntactic proof of decidability. The modularity gives us the option to

carry out the bulk of the decidability proof in a weak metatheory and the ability to explore different

algorithms with minimal changes to the whole development.

In future work, we hope to leverage the modularity of our proof development to prove the

correctness of other type conversion algorithms through syntactic means. For example, we could

replace the iterated weak-head 𝛽-reduction in Coquand’s algorithm with an efficient untyped NbE

algorithm, which can be proven correct syntactically through confluence [Grégoire and Leroy

2002]. We also would like to apply our techniques to systems, such as ICC [Barras and Bernardo

2008; Miquel 2001] and DCOI [Liu et al. 2024b], that require untyped equality judgments and so

have previously not included 𝜂-laws for dependent pairs.
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