Require Import Autosubst2.syntax List. Reserved Notation "Γ ⊢ a ;; ℓ ∈ A" (at level 70). Definition get_level a := match a with | Fixed ℓ => ℓ | Floating ℓ => ℓ end. Inductive lookup {A} : nat -> list A -> A -> Prop := | here A Γ : lookup 0 (cons A Γ) A | there i Γ A B : lookup i Γ A -> lookup (S i) (cons B Γ) A. Definition ctx := list (Level * Ty). Definition squash a := match a with | Fixed ℓ => false | Floating ℓ => true end. Fixpoint fixed_ctx (Γ : ctx) := match Γ with | nil => nil | (a, _) :: Γ => squash a :: fixed_ctx Γ end. (* false <= true *) (* A term is liftable if it remains well-typed raising the levels of the floating levels to the current level *) Fixpoint liftable Φ (a : Tm) := match a with | VarTm i => lookup i Φ false | FlApp a b => liftable Φ a /\ liftable Φ b | App a b => liftable Φ a | FlAbs a => liftable (false :: Φ) a | Abs a => liftable (false :: Φ) a end. Inductive Wt (Γ : ctx) : Tm -> bool -> Ty -> Prop := | T_Var ℓ i ℓ0 A : Bool.le (get_level ℓ0) ℓ -> lookup i Γ (ℓ0, A) -> Γ ⊢ VarTm i ;; ℓ ∈ A | T_FlApp ℓ a b A B : Γ ⊢ b ;; ℓ ∈ FlFun A B -> Γ ⊢ a ;; ℓ ∈ A -> Γ ⊢ FlApp b a ;; ℓ ∈ B | T_FlAbs ℓ a A B : (Floating ℓ, A) :: Γ ⊢ a ;; ℓ ∈ B -> Γ ⊢ FlAbs a ;; ℓ ∈ FlFun A B | T_App ℓ ℓ0 a b A B : Γ ⊢ b ;; ℓ ∈ Fun ℓ0 A B -> Γ ⊢ a ;; ℓ0 ∈ A -> liftable (fixed_ctx Γ) a -> Γ ⊢ App b a ;; ℓ ∈ A | T_Abs ℓ ℓ0 b A B : (Fixed ℓ0, A) :: Γ ⊢ b ;; ℓ ∈ B -> Γ ⊢ Abs b ;; ℓ ∈ Fun ℓ0 A B where "Γ ⊢ a ;; ℓ ∈ A" := (Wt Γ a ℓ A).