179 lines
4.8 KiB
Coq
179 lines
4.8 KiB
Coq
From Ltac2 Require Ltac2.
|
||
Import Ltac2.Notations.
|
||
|
||
Import Ltac2.Control.
|
||
Require Import ssreflect ssrbool.
|
||
Require Import FunInd.
|
||
Require Import Psatz.
|
||
From stdpp Require Import relations (rtc (..), rtc_once, rtc_r, sn).
|
||
From Hammer Require Import Tactics.
|
||
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax.
|
||
|
||
Module βηPar.
|
||
Inductive R : Tm -> Tm -> Prop :=
|
||
| VarCong i :
|
||
R (VarTm i) (VarTm i)
|
||
| AppCong b0 b1 a0 a1 :
|
||
R b0 b1 ->
|
||
R a0 a1 ->
|
||
R (App b0 a0) (App b1 a1)
|
||
| AbsCong a0 a1 :
|
||
R a0 a1 ->
|
||
R (Abs a0) (Abs a1)
|
||
| AppAbs b0 b1 a0 a1 :
|
||
R b0 b1 ->
|
||
R a0 a1 ->
|
||
R (App (Abs b0) a0) (subst_Tm (scons a1 VarTm) b1)
|
||
| AbsEta b0 b1 :
|
||
R b0 b1 ->
|
||
R b0 (Abs (App (ren_Tm shift b1) (VarTm var_zero))).
|
||
|
||
#[export]Hint Constructors R : βηPar.
|
||
|
||
Derive Inversion inv with (forall a b, R a b).
|
||
|
||
Lemma AppAbs' b0 b1 a0 a1 u :
|
||
u = (subst_Tm (scons a1 VarTm) b1) ->
|
||
R b0 b1 ->
|
||
R a0 a1 ->
|
||
R (App (Abs b0) a0) u.
|
||
Proof. move => ->. apply AppAbs. Qed.
|
||
|
||
Lemma AbsEta' b0 b1 u :
|
||
u = (Abs (App (ren_Tm shift b1) (VarTm var_zero))) ->
|
||
R b0 b1 ->
|
||
R b0 u.
|
||
Proof. move => ->. apply AbsEta. Qed.
|
||
|
||
Lemma refl a : R a a.
|
||
Proof. elim : a => //=; eauto with βηPar. Qed.
|
||
|
||
Lemma morphing a b ρ :
|
||
R a b ->
|
||
R (subst_Tm ρ a) (subst_Tm ρ b).
|
||
Proof.
|
||
move => h. move : ρ. elim : a b /h => /=; eauto with βηPar.
|
||
- eauto using refl.
|
||
- move => *; apply : AppAbs'; eauto. by asimpl.
|
||
- move => *; apply : AbsEta'; eauto. by asimpl.
|
||
Qed.
|
||
|
||
Lemma renaming a b ξ :
|
||
R a b ->
|
||
R (ren_Tm ξ a) (ren_Tm ξ b).
|
||
Proof. substify. apply morphing. Qed.
|
||
|
||
Definition morphing2_ok ρ0 ρ1 := forall (i : nat), R (ρ0 i) (ρ1 i).
|
||
|
||
Lemma morphing2_ren (ξ : nat -> nat) ρ0 ρ1 :
|
||
morphing2_ok ρ0 ρ1 ->
|
||
morphing2_ok (funcomp (ren_Tm ξ) ρ0) (funcomp (ren_Tm ξ) ρ1).
|
||
Proof. rewrite /morphing2_ok; eauto using renaming. Qed.
|
||
|
||
Lemma morphing2_ext a b ρ0 ρ1 :
|
||
R a b ->
|
||
morphing2_ok ρ0 ρ1 ->
|
||
morphing2_ok (scons a ρ0) (scons b ρ1).
|
||
Proof.
|
||
move => * [|i] //=.
|
||
Qed.
|
||
|
||
Lemma morphing_up ρ0 ρ1 :
|
||
morphing2_ok ρ0 ρ1 ->
|
||
morphing2_ok (up_Tm_Tm ρ0) (up_Tm_Tm ρ1).
|
||
Proof.
|
||
move => h.
|
||
apply morphing2_ext. apply VarCong.
|
||
by apply morphing2_ren.
|
||
Qed.
|
||
|
||
Lemma morphing2 a b ρ0 ρ1 :
|
||
R a b ->
|
||
morphing2_ok ρ0 ρ1 ->
|
||
R (subst_Tm ρ0 a) (subst_Tm ρ1 b).
|
||
Proof.
|
||
move => h. move : ρ0 ρ1.
|
||
elim : a b /h => //=; eauto using morphing_up with βηPar.
|
||
- move => * /=.
|
||
apply : AppAbs'; eauto using morphing_up. by asimpl.
|
||
- move => * /=.
|
||
apply : AbsEta'; eauto using morphing_up. by asimpl.
|
||
Qed.
|
||
|
||
End βηPar.
|
||
|
||
Module IPar.
|
||
Inductive R : Tm -> Tm -> Prop :=
|
||
| VarCong i :
|
||
R (VarTm i) (VarTm i)
|
||
| AppCong b0 b1 a0 a1 :
|
||
βηPar.R b0 b1 ->
|
||
βηPar.R a0 a1 ->
|
||
R (App b0 a0) (App b1 a1)
|
||
| AbsCong a0 a1 :
|
||
βηPar.R a0 a1 ->
|
||
R (Abs a0) (Abs a1)
|
||
| AppAbs b0 b1 a0 a1 :
|
||
βηPar.R b0 b1 ->
|
||
βηPar.R a0 a1 ->
|
||
R (App (Abs b0) a0) (subst_Tm (scons a1 VarTm) b1).
|
||
Derive Inversion inv with (forall a b, R a b).
|
||
End IPar.
|
||
|
||
Module OExp.
|
||
Inductive R : Tm -> Tm -> Prop :=
|
||
| AbsEta b :
|
||
R b (Abs (App (ren_Tm shift b) (VarTm var_zero))).
|
||
|
||
End OExp.
|
||
|
||
Lemma IO_factorization a c :
|
||
βηPar.R a c -> exists b, IPar.R a b /\ rtc OExp.R b c.
|
||
Proof.
|
||
move => h. elim : a c /h.
|
||
- move => i. exists (VarTm i).
|
||
split. constructor.
|
||
apply rtc_refl.
|
||
- move => b0 b1 a0 a1 hb [b' [ihb0 ihb1]] ha [a' [iha0 iha1]].
|
||
exists (App b1 a1).
|
||
split. apply IPar.AppCong; eauto.
|
||
apply rtc_refl.
|
||
- move => a0 a1 ha [a' [iha0 iha1]].
|
||
exists (Abs a1). split. by apply IPar.AbsCong.
|
||
apply rtc_refl.
|
||
- move => b0 b1 a0 a1 hb [b' [ihb0 ihb1]] ha [a' [iha0 iha1]].
|
||
eexists. split. apply IPar.AppAbs; eauto.
|
||
apply rtc_refl.
|
||
- move => b0 b1 hb [b' [ihb0 ihb1]].
|
||
exists b'. split => //.
|
||
apply : rtc_r; eauto.
|
||
constructor.
|
||
Qed.
|
||
|
||
Lemma IO_merge a b c :
|
||
βηPar.R a b -> OExp.R b c -> βηPar.R a c.
|
||
Proof. hauto lq:on inv:OExp.R ctrs:βηPar.R. Qed.
|
||
|
||
Lemma IO_merge' a b c :
|
||
βηPar.R a b -> rtc OExp.R b c -> βηPar.R a c.
|
||
Proof. induction 2; hauto l:on use:IO_merge. Qed.
|
||
|
||
Lemma diamond a b0 b1 :
|
||
βηPar.R a b0 -> βηPar.R a b1 -> exists c, βηPar.R b0 c /\ βηPar.R b1 c.
|
||
Proof.
|
||
move => h. move : b1.
|
||
elim : a b0 / h.
|
||
- move => i b1 /IO_factorization.
|
||
move => [b [h0 h1]].
|
||
inversion h0; subst. exists b1.
|
||
split => //=.
|
||
apply : IO_merge'; eauto.
|
||
constructor.
|
||
apply βηPar.refl.
|
||
- move => b0 b1 a0 a1 hb ihb ha iha b2 /IO_factorization.
|
||
move => [u [h0 h1]].
|
||
elim /IPar.inv : h0=>//_.
|
||
+ move => b3 b4 a2 a3 hb' ha' [*]. subst.
|
||
have {}/ihb [b14 [ihb0 ihb1]] := hb'.
|
||
have {}/iha [a13 [iha0 iha1]] := ha'.
|
||
exists (App b14 a13). split. by constructor.
|